Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)
\(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)
\(\Rightarrowđpcm\)
d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)
\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
e, Sai đề
f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)
\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
a) Ta có: \(\left(2x+\frac{1}{4}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{4}\right)^4+6\ge6\)
Dấu "=" xảy ra khi \(2x+\frac{1}{4}=0\Rightarrow2x=\frac{-1}{4}\Rightarrow x=\frac{-1}{8}\)
Vậy Emin = 6 \(\Leftrightarrow x=\frac{-1}{8}\)
b) Ta có: \(\left(5-3x\right)^2\ge0\Rightarrow\left(5-3x\right)^2-2013\ge-2013\)
Dấu "=" xảy ra khi \(5-3x=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
Vậy Emin = -2013 \(\Leftrightarrow x=\frac{5}{3}\)
Mấy bài còn lại làm tương tự.
câu a) \(A=3x^3+7x^2+3x-\left(\dfrac{1}{4}+3x^3\right)-3\dfrac{3}{4}\)
\(\Leftrightarrow A=3x^3+7x^2+3x-\dfrac{1}{4}-3x^3-\dfrac{15}{4}\)
\(\Leftrightarrow A=7x^2+3x-4\)
\(B=x\left(x^2-x+1\right)-\dfrac{1}{2}x^2\left(2x-4\right)-2\)
\(\Leftrightarrow B=x^3-x^2+x-x^3+2x^2-2\)
\(\Leftrightarrow B=x^2+x-2\)
câu b) chỉ cần thế \(x=-1\) vào biểu thức \(A\) \(\Rightarrow\) tính
và thế \(x=\dfrac{1}{2}\) vào biểu thức \(B\) \(\Rightarrow\) tính
câu c) ta có \(B+M=A\Leftrightarrow x^2+x-2+M=7x^2+3x-4\)
\(\Leftrightarrow M=7x^2+3x-4-\left(x^2+x-2\right)=6x^2+2x-2\)
câu d) ta có : \(\dfrac{x+5}{-3}=\dfrac{x}{2}\Leftrightarrow2\left(x+5\right)=-3x\Leftrightarrow2x+10=-3x\)
\(\Leftrightarrow5x=-10\Leftrightarrow x=-2\)
thế \(x=-2\) vào \(M=6x^2+2x-2=6.\left(-2\right)^2+2\left(-2\right)-2=18\)
a: Đặt A(x)=0
=>1/2x-3/4x+3/2=0
=>-1/2x=-3/2
hay x=3
b: Đặt B(x)=0
\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-25\right)=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}x-5\right)\left(\dfrac{1}{2}x+5\right)=0\)
hay \(x\in\left\{0;10;-10\right\}\)
c: Đặt C(x)=0
\(\Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)=0\)
=>x-2=0
hay x=2
d: Đặt D(x)=0
\(\Rightarrow2x^2-x+10=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot2\cdot10=-79< 0\)
DO đó: PTVN
a)A=\(x^5-\dfrac{1}{2}x+7x^3-2x+\dfrac{1}{5}x^3+3x^4-x^5+\dfrac{2}{5}x^4+15\)
=\(=\dfrac{-5}{2}x+\dfrac{36}{5}x^3+\dfrac{17}{5}x^4+15\)
b)B=\(3x^2-10+\dfrac{2}{5}x^3+7x-x^2+8+7x^2\)
\(=9x^2+\dfrac{2}{5}x^3+7x+2\)
c)C=\(\dfrac{1}{7}x-2x^4+5x+6\)
A
Cần đáp số thoi