K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

đây là đáp án

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\) là A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\) Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị...
Đọc tiếp

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\)

A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\)

Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị của biểu thức ( M + 2N ) là

A. \(2\sqrt{2}+2\) B. \(4-2\sqrt{2}\) C. \(2\sqrt{2}-4\) D. \(2\sqrt{2}-2\)

Câu 3 : Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \(-x^3-3x^2+m\) trên đoạn \(\left[-1;1\right]\) bằng 0

A. m = 0 B. m = 6 C. m = 2 D. m = 4

Câu 4 : Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{x+m}{x+1}\) trên \(\left[1;2\right]\) bằng 8 ( m là tham số thực ) . Khẳng định nào sau đây đúng ?

A. m > 10 B. 8 < m < 10 C. 0 < m < 4 D. 4 < m < 8

2
NV
16 tháng 10 2020

3.

\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)

\(\Rightarrow y_{min}=y\left(1\right)=m-4\)

\(\Rightarrow m-4=0\Rightarrow m=4\)

4.

Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định

\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)

\(\Rightarrow m=\frac{41}{5}\)

Đáp án B

NV
16 tháng 10 2020

1.

\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến

\(m=y_{min}=y\left(0\right)=2\)

\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)

\(\Rightarrow M^2+m^2=\frac{41}{4}\)

2.

Hàm xác định trên \(\left[-2;2\right]\)

\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)

\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)

\(\Rightarrow N=-2;M=2\sqrt{2}\)

\(\Rightarrow M+2N=2\sqrt{2}-4\)

NV
3 tháng 4 2020

1/ \(f'\left(x\right)=\frac{3\sqrt{x^2+1}-\frac{x\left(3x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\frac{3\left(x^2+1\right)-3x^2-x}{\left(x^2+1\right)\sqrt{x^2+1}}=\frac{3-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)

Hàm số đồng biến trên \(\left(-\infty;3\right)\) nghịch biến trên \(\left(3;+\infty\right)\)

\(\Rightarrow f\left(x\right)\) đạt GTLN tại \(x=3\)

\(f\left(x\right)_{max}=f\left(3\right)=\frac{10}{\sqrt{10}}=\sqrt{10}\)

2/ \(y'=\frac{\sqrt{x^2+2}-\frac{\left(x-1\right)x}{\sqrt{x^2+2}}}{x^2+2}=\frac{x^2+2-x^2+x}{\left(x^2+2\right)\sqrt{x^2+2}}=\frac{x+2}{\left(x^2+2\right)\sqrt{x^2+2}}\)

\(f'\left(x\right)=0\Rightarrow x=-2\in\left[-3;0\right]\)

\(y\left(-3\right)=-\frac{4\sqrt{11}}{11}\) ; \(y\left(-2\right)=-\frac{\sqrt{6}}{2}\) ; \(y\left(0\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}M=-\frac{\sqrt{2}}{2}\\N=-\frac{\sqrt{6}}{2}\end{matrix}\right.\) \(\Rightarrow MN=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}\)

Tất cả các đáp án đều sai

3/ \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\\\sqrt{x+1}>0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\ge0\) \(\forall x\Rightarrow N=0\) khi \(x=3\)

- Với \(0\le x< 3\Rightarrow f\left(x\right)=\left(3-x\right)\sqrt{x+1}\)

\(\Rightarrow f'\left(x\right)=-\sqrt{x+1}+\frac{\left(3-x\right)}{2\sqrt{x+1}}=\frac{-2\left(x+1\right)+3-x}{2\sqrt{x+1}}=\frac{-3x+1}{2\sqrt{x+1}}\)

\(f'\left(x\right)=0\Rightarrow x=\frac{1}{3}\)

- Với \(3< x\le4\Rightarrow f\left(x\right)=\left(x-3\right)\sqrt{x+1}\)

\(\Rightarrow f'\left(x\right)=\sqrt{x+1}+\frac{x-3}{2\sqrt{x+1}}=\frac{2\left(x+1\right)+x-3}{2\sqrt{x+1}}=\frac{3x-1}{2\sqrt{x+1}}>0\) \(\forall x>3\)

Ta có: \(f\left(0\right)=3\) ; \(f\left(\frac{1}{3}\right)=\frac{16\sqrt{3}}{9}\) ; \(f\left(4\right)=\sqrt{5}\)

\(\Rightarrow M=\frac{16\sqrt{3}}{9}\Rightarrow M+2N=\frac{16\sqrt{3}}{9}\)

3 tháng 4 2020

Câu 2 hình như câu B mà người ta nói đạt GTLN . GTNN tại M , N nên là 0 x -2 =0

NV
29 tháng 5 2019

\(I_1=\int\limits^2_0f\left(2x\right)dx\)

Đặt \(2x=t\Rightarrow dx=\frac{dt}{2}\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)

\(\Rightarrow I_1=\int\limits^4_0f\left(t\right).\frac{dt}{2}=\frac{1}{2}\int\limits^4_0f\left(t\right)dt=\frac{1}{2}\int\limits^4_0f\left(x\right)dx=\frac{1}{2}.2018=1009\)

\(I_2=\int\limits^2_{-2}f\left(2-x\right)dx\)

Đặt \(2-x=t\Rightarrow dx=-dt\); \(\left\{{}\begin{matrix}x=-2\Rightarrow t=4\\x=2\Rightarrow t=0\end{matrix}\right.\)

\(\Rightarrow I_2=\int\limits^0_4f\left(t\right).\left(-dt\right)=\int\limits^4_0f\left(t\right)dt=\int\limits^4_0f\left(x\right)dx=2018\)

\(\Rightarrow I=I_1+I_2=1009+2018=3027\)

29 tháng 5 2019

cám ơn ạ

16 tháng 8 2020

\(2018^{2\left(x^2-y+1\right)}=\frac{2x+y}{x^2+2x+1}\)

\(\Leftrightarrow2\left(x^2-y+1\right)=log_{2018}\left(\frac{2x+y}{x^2+2x+1}\right)\)

\(\Leftrightarrow2\left(x^2+2x+1-2x-y\right)=log_{2018}\left(2x+y\right)-log_{2018}\left(x^2+2x+1\right)\)

\(\Leftrightarrow2\left(x^2+2x+1\right)+log_{2018}\left(x^2+2x+1\right)=log_{2018}\left(2x+y\right)+2\left(2x+y\right)\)

Đặt \(f\left(u\right)=log_{2018}u+2u\)

\(\begin{matrix}x^2+2x+1>0\\2x+y>0\end{matrix}\Rightarrow u>0\)

\(f'\left(u\right)=\frac{1}{u.ln2018}+2>0\)

Suy ra hàm số đồng biến

\(\Leftrightarrow f\left(x^2+2x+1\right)=f\left(2x+y\right)\)\(\Leftrightarrow x^2+2x+1=2x+y\) (tính chất hàm đồng biến)

\(\Leftrightarrow y=x^2+1\)

\(P=2y-3x=2x^2-3x+2\)

\(P=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)

\(P_{min}=\frac{7}{8}\) khi \(x=\frac{3}{4}\)

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\) Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi...
Đọc tiếp

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là

A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\)

Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi đó giá trị a + 2b bằng

A. \(\frac{3}{2}\) B. \(\frac{4}{3}\) C. 1 D. \(\frac{2}{3}\)

Câu 3 : Có bao nhiêu giá trị nguyên dương của m để khoảng cách từ gốc tọa độ O đến đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y = \(x^3-3x+m\) nhỏ hơn hoặc bằng \(\sqrt{5}\)

A. 5 B. 2 C. 11 D. 4

Câu 4 : Gọi m là giá trị nhỏ nhất của hàm số y = \(x-1+\frac{4}{x-1}\) trên khoảng \(\left(1;+\infty\right)\) . Tìm m ?

A. m = 2 B. m = 5 C. m = 3 D. m = 4

Câu 5 : giá trị lớn nhất của hàm số \(y=\sqrt{-x^2+4x}\) trên khoảng (0;3) là :

A. 4 B. 2 C. 0 D. -2

Câu 6 : giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\sqrt{x-2}+\sqrt{4-x}\) lần lượt là M và m . Chọn câu trả lời đúng

A. M = 4 , m = 2 B. M = 2 , m = 0 C. M = 3 , m = 2 D. M = 2 , m = \(\sqrt{2}\)

4
NV
16 tháng 10 2020

1.

Hàm trùng phương có đúng 1 cực trị khi:

TH1: \(a=m=0\)

TH2: \(ab=-m>0\Leftrightarrow m< 0\)

\(\Rightarrow m\le0\)

Đáp án B

NV
16 tháng 10 2020

2.

\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)

Hàm số có 2 cực trị nằm về 2 phía trục hoành

\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)

\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)

\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)

21 tháng 4 2017

Lời giải + diễn giải

để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm

a) \(y'=3x^2-6x+m\)

xét f(x)= 3x^2 -6x+m

để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)

\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)

Kết luận với m< 3 hàm A(x) luôn có cực trị

b)

\(y'=3x^2+4mx+m\)

\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)

c)

\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)

\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)

\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)

6 tháng 4 2016

Xét phương trình hoành độ giao điểm của đồ thị (C) và d :

\(\frac{2x+3}{x+2}=-2x+m\)\(\Leftrightarrow\begin{cases}x\ne-2\\2x^2+\left(6-m\right)x+3-2m=0\end{cases}\) (*)

Xét phương trình (*), ta có \(\Delta>0\), mọi \(m\in R\) và x=-2 không là nghiệm của (*) nên d luôn cắt đồ thị (C) tại 2 điểm phân biệt A, B với mọi m

Hệ số góc của tiếp tuyến tại A, tại B lần lượt là :

\(k_1=\frac{1}{\left(x_1+1\right)^2};k_2=\frac{1}{\left(x_2+1\right)^2}\) trong đó \(x_1,x_2\) là 2 nghiệm của phương trình (*)

Ta thấy :

\(k_1.k_2=\frac{1}{\left(x_1+1\right)^2.\left(x_2+1\right)^2}=\frac{1}{\left(x_1x_2+2x_1+2x_2+4\right)^2}=4\)  (\(k_1>0;k_2>0\) )

Có \(P=\left(k_1\right)^{2014}+\left(k_2\right)^{2014}\ge2\sqrt{\left(k_1k_2\right)^{2014}}=2^{2015}\)

Do đó , Min \(P=2^{2015}\) đạt được khi và chỉ khi \(k_1=k_2\)

\(\Leftrightarrow\frac{1}{\left(x_1+2\right)^2}=\frac{1}{\left(x_2+2\right)^2}\Leftrightarrow\left(x_1+2\right)^2=\left(x_2+2\right)^2\)

Do \(x_1,x_2\) phân biệt nên ta có \(x_1+2=-x_2-2\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow m=-2\)

Vậy giá trị cần tìm là \(m=-2\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số