Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 mình nghĩ nó khá đơn giản rồi, bạn tính ra ngay thôi
Câu 2: Mình nghĩ là tìm min chứ ko phải max
Vì \(\left(-\frac{2}{3}+\frac{1}{2}x\right)^2\ge0\Rightarrow A=\left(-\frac{2}{3}+\frac{1}{2}x\right)^2-2,5\ge2,5\)
\(\Rightarrow A_{min}=2,5\Leftrightarrow\left(-\frac{2}{3}+\frac{1}{2}x\right)^2=0\Leftrightarrow-\frac{2}{3}+\frac{1}{2}x=0\Leftrightarrow\frac{1}{2}x=\frac{2}{3}\Leftrightarrow x=\frac{4}{3}\)
A đạt giá trị nhỏ nhất là 2,5 khi x=4/3
Câu 3:
\(x=\frac{26}{7+b}\) âm khi 7+b âm <=> 7+b<0 <=> b<-7
vì b là số nguyên lớn nhất nên b=-8
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
Ta có: \(\left|x-\frac{2}{3}\right|\ge x-\frac{2}{3}\)
\(B\ge x+\frac{1}{2}-x+\frac{2}{3}=\frac{7}{6}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x\ge\frac{2}{3}\\x\in R\end{cases}}\) Vậy...
Với \(x\ge\frac{2}{3}\Rightarrow\left|x-\frac{2}{3}\right|\ge0\Rightarrow\left|x-\frac{2}{3}\right|=x-\frac{2}{3}\), thay vào B ta có:
\(B=x+\frac{1}{2}-\left(x-\frac{2}{3}\right)=x+\frac{1}{2}-x+\frac{2}{3}=\frac{7}{6}\left(1\right)\)
Với \(x< \frac{2}{3}\Rightarrow x-\frac{2}{3}< 0\Rightarrow\left|x-\frac{2}{3}\right|=-x+\frac{2}{3}\), thay vào B ta có:
\(B=x+\frac{1}{2}-\left(-x+\frac{2}{3}\right)=x+\frac{1}{2}+x-\frac{2}{3}=2x-\frac{1}{6}\)
Vì \(x< \frac{2}{3}\Rightarrow2x< \frac{4}{3}\Rightarrow2x-\frac{1}{6}< \frac{4}{3}-\frac{1}{6}=\frac{7}{6}\left(2\right)\)
Từ (1) và (2) => \(B\le\frac{7}{6}\)
Vậy \(B_{max}=\frac{7}{6}\Leftrightarrow x\ge\frac{2}{3}\)
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
a, Để A lớn nhất thì mẫu 3|x-1|+1 nhỏ nhất và lớn hơn 0.Mà |x-1|>=0 => 3|x-1|>=0 => 3|x-1| +1>=1 Suy ra A >=1 Dấu ''='' sảy ra khi 3|x-1|=0 Suy ra x-1=0 =>x=1
b, Để B nhận giá trị lớn nhất thì -4-2|x-1| nhỏ nhất lớn hơn 0 .Mà -2|x-1|<=0 Nếu -2|x-1|=0 thì mẫu -4 -2 Suy ra để -4-2|x-1| nhỏ nhất lớn hơn 0 thì -2|x-1| lớn nhất và nhỏ hơn 0 =>-2|x-1|=-1 =>|x-1|=1/2 => x-1=1/2 hoặc x-1=-1/2 +TH1:x-1=1/2 =>x=1/2+1=3/2 +TH2:x-1=-1/2 =>x=-1/2+1=1/2 thay x=3/2 và x=1/2 vào B ta đều tìm được B=5/2
Vì lx-2/3l \(\ge\)0
=>1/2 - lx-2/3l \(\le\)1/2
=>x+ 1/2 - lx-2/3l \(\le\)x+1/2
=> A\(\le\)x+1/2
=> Max A = x+1/2 khi lx-2/3l=0 hay x=2/3
=>Max A= 2/3+1/2= 7/6 khi x=2/3
99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999