Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Lời giải.
Ta có
Suy ra V 1 V 2 lớn nhất khi V V 1 nhỏ nhất => V 1 đạt giá trị lớn nhất.
Gọi h,r lần lượt là chiều cao và bán kính đáy của hình nón nội tiếp mặt cầu.
Gọi I, O lần lượt là tâm của đường tròn đáy hình nón và tâm của mặt cầu.
Gọi A là đỉnh của hình nón. Xét thiết diện qua trục của hình nón như hình vẽ bên.
Xét hàm
Cách 2.
TH1. Chiều cao của khối nón h= R + x và bán kính đáy r 2 = R 2 - x 2
Theo BĐT Cô si cho 3 số dương, ta có
Dấu "=" xảy ra
TH2. Chiều cao của khối nón h = R - x. Làm tương tự.
Đáp án D
Gọi khoảng cách từ tâm hình cầu đến mặt phẳng đáy của hình nón là x, 0 < x < R
Ta có chiều cao của hình nón h ≤ R + x. Do vậy:
V n ó n =
Đặt
f'(x) =
V n ó n = 32 81 πR 3