\(P=\)l x + 1  l\(^{^{2015}}\)+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Tìm GTNN nhé :D

Ta có : \(P=\left|x+1\right|^{2015}+116\)

Mà : \(\left|x+1\right|^{2015}\ge0\forall x\)

Nên : \(\left|x+1\right|^{2015}+116\ge116\forall x\)

Vậy Pmin = 116 khi x = -1

9 tháng 8 2017

Ta thấy: |x+1|≥0

​ ​⇒|x+1I2015 ≥0

​ ⇒|x+1|2015+116≥116

⇒P≥116

Dấu "=" xảy ra khi |x+1|=0⇔x+1=0⇔x=−1

Vậy MinP=116  khi x=−1

​​ ​ 

4 tháng 3 2018

a) Vì \(x-49\ne0\Rightarrow x\ne49\)

Nên để A đạt GTLN <=> x - 49 đạt GTNN <=> x là số nguyên dương nhỏ nhất

Dấu "="  xảy ra khi x - 49 = 1 => x = 50

Vậy Amax = 2015 <=> x = 50

b) Để A đạt GTNN <=> x - 49 đạt GTLN <=> x là số nguyên âm lớn nhất

Dấu "=" xảy ra khi x - 49 = -1 => x = 48

Vậy Amin = 2015/8 <=> x = 48

4 tháng 3 2018

a,A có giá trị nhỏ nhắt khi x-49 là số nguyên dương nhỏ nhất

suy ra x-49=1 suy ra x=1+49 =50

b,A có giá trị nhỏ nhất khi x-49 là số nguyên âm lớn nhất 

suy ra x-49 =-1 suy ra x=-1+49=48

11 tháng 2 2018

Ta có: \(A=\frac{1-3x}{x-1}=\frac{-3\left(x-1\right)-2}{x-1}=\frac{-3\left(x-1\right)}{x-1}-\frac{2}{x-1}=-3-\frac{2}{x-1}\le-3\)

Dấu "=" xảy ra khi \(2⋮\left(x-1\right)\Leftrightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Nếu x - 1 = -1 => x = 0

Nếu x - 1 = 1 => x = 2

Nếu x - 1 = 2 => x = 3

Nếu x - 1 = -2 => x = -1

Vậy Amax = -3 <=> x = {0;2;3;-1}

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2

29 tháng 7 2016

\(\frac{\left|x\right|+2015}{2016}\) . Có: \(\left|x\right|\ge0\Rightarrow\left|x\right|+2015\ge2015\Rightarrow\frac{\left|x\right|+2015}{2016}\ge\frac{2015}{2016}\)

Dấu = xảy ra khi \(x+2015=0\Rightarrow x=0\)

Vậy \(Min\frac{\left|x\right|+2015}{2016}=\frac{2015}{2016}\) tại \(x=0\)

29 tháng 7 2016

\(\frac{\left|x\right|+1996}{-1997}\) có \(\left|x\right|\ge0\Rightarrow\left|x\right|+1996\ge1996\Rightarrow\frac{\left|x\right|+1996}{-1997}\le-\frac{1996}{1997}\)

Dấu = xảy ra khi \(\left|x\right|+1996=1996\Rightarrow x=0\) 

Vậy \(Max\frac{\left|x\right|+1996}{-1997}=\frac{1996}{-1997}\) tại \(x=0\)

12 tháng 2 2019

a đây là điều hiển nhiên

b (x-8)2>=0 nên (x-8)-2018>=-2018

dấu "=" xảy ra khi x=8

c/(x+5)>=0 nên -(x+5)2 <=0

nên -(x+5)2 +9<=9

dấu "=" xảy ra khi x=-5

22 tháng 3 2018

Để A có giá trị lớn nhất, |x| phải nhỏ nhất => |x| = 0 => x = 0

Ta có: \(A=-\left|0\right|+8=8\)

=> \(A=8,x=0\)

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0