Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)
=\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)
=\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1
Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1
2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)
=\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)
Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)
\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)
=> GTLN của đa thức là 8
<=> x-2 = 0
<=> x = 2
\(x^2+y^2-x+6y+15\)
\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
=> GTNN của đa thức là 23/4
<=> x-1/2=0 và y+3=0
<=> x=1/2 và y=-3
1)P(x)=4x-x2+1=-(x2-4x+4)+5=-(x-2)2+5
Do (x-2)2>0
=>-(x-2)2<0
=>P(x)=-(x-2)2+5<5
=>Max P=5<=>(x-2)2=0<=>x=2
2)A(x)=x2-4x+y2-8y+6=(x2-4x+4)+(y2-8y+16)-14
=(x-2)2+(y-4)2-14
Do (x-2)2>0
(y-4)2>0
=>(x-2)2+(y-4)2>0
=>A(x)=(x-2)2+(y-4)2-14>-14
=>Min A=-14<=>(x-2)2=0 và (y-4)2=0<=>x=2 và y=4
P(x) = 4x - x^2 + 1
= - ( x^2 - 4x + 10)
= -( x^2 - 2.x.2 + 4 + 6)
= -( x- 2 )^2 - 6
Vậy GTLN của p là -6 tại x - 2 = 0 => x = 2
VẬy x = 2 thì ....
B2)
A(x) = x^2 - 4x + y^2 - 8y + 6
= x^2 - 2.x . 2 + 4 + y^2 - 2.y.4 + 16 - 14
=( x - 2)^2 + (y - 4)^2 - 14
VẬy GTNN của bt là -14
khi x - 2 = 0 => x = 2
y - 4= 0 => y=4
Câu 1 :
\(E=4x^2+y^2-4x-2y+3\)
\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)
\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Câu 2 :
\(G=x^2+2y^2+2xy-2y\)
\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)
\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0
--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0
--> (x+y+2)^2 + y^2 = 1
-->(x+y+2)^2 <= 1 ( vì y^2 >=1)
--> -1 <= x+y+2 <=1
--> 2015 <= x+y+2018 <= 2017
hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3
Q<=2017, dau bang xay ra khi x+y+2=1 --> x+y=-1
Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3
giá trị lớn nhất của Q là 2017 khi x+y=-1
Đa thức = (4x^2-4x+1) + (y^2-2y+2) + 1
= (2x-1)^2 + (y-1)^2 + 1>=1
Dấu "=" xảy ra <=> x=1/2 ; y=1
Vậy Min đa thức = 1<=> x=1/2 ; y=1
\(A=4x^2-4x+1+y^2-2y+1+1=\left(2x-1\right)^2+\left(y-1\right)^2+1\)
=> A\(\ge1\)
dấu = ảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
\(E=-x^2-4x-y^2+2y=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)
\(E=-\left(x+2\right)^2-\left(y-1\right)^2+5< =5\)
=>Max \(E=5\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}< =>\hept{\begin{cases}x=-2\\y=1\end{cases}}}\)