Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(-\left|3x-\frac{7}{6}\right|\le0\)
\(\Rightarrow B=\frac{5}{2}-\left|3x-\frac{7}{6}\right|\le\frac{5}{2}\)
Vậy GTLN của B là \(\frac{5}{2}\) <=> \(3x-\frac{7}{6}=0\) <=> x = \(\frac{7}{18}\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
a) \(A=x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\)
TH1: Nếu \(x-\frac{2}{3}\ge0\Rightarrow x\ge\frac{2}{3}\Rightarrow\left|x-\frac{2}{3}\right|=x-\frac{2}{3}\)
\(A=x+\frac{1}{2}-x+\frac{2}{3}=\frac{7}{6}\left(1\right)\)
TH2: Nếu \(x-\frac{2}{3}< 0\Rightarrow x< \frac{2}{3}\Rightarrow\left|x-\frac{2}{3}\right|=-x+\frac{2}{3}\)
\(A=x+\frac{1}{2}+x-\frac{2}{3}=2x-\frac{1}{6}\)
Vì \(x< \frac{2}{3}\Rightarrow2x-\frac{1}{6}< \frac{7}{6}\left(2\right)\)
Từ (1) và (2) => GTLN của A là \(\frac{7}{6}\)khi \(x\ge\frac{2}{3}\)
\(\left|3x-\frac{7}{6}\right|\ge0=>\frac{5}{2}-\left|3x-\frac{7}{6}\right|\le\frac{5}{2}=2,5=>B_{max}=2,5<=>3x-\frac{7}{6}=0=>x=\frac{7}{18}\)