\(\dfrac{2014}{2x^2-4x+2014}\) đạt được...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

để 2014/(2x^2-4x+2014)LN

<=> 2x^2-4x+2014 NN

<=> x^2-2x+1007 NN

ta có x^2-2x+1007

=x^2-2x+1+1006

=(x-1)^2+1006

tc (x-1)^2>=0

<=>(x-1)^2+1006>=1006

vậy GTNN (x-1)^2+1006=1006<=>x-1=0

<=>x=1

vậy 2014/(2x^2 -4x+2014) đạt giá lớn nhất khi x=1

mk k bk là có đúng k nhé

nhưng bd mk hc là làm z

25 tháng 12 2016

2014/(2x^2-4x+2+2012)

=2014/2(x-1)^2+2012 bé hơn hoặc bằng 2014/2012

suy ra GTLN của biểu thức là 2014/2012 tại x=1

25 tháng 12 2016

\(x=\frac{1007}{1006}\)

24 tháng 2 2017

ko biết đúng hay sai âu nha bạn

\(\frac{2014}{2x^2-4x+2014}\\ =\frac{2014}{2\left(x-1\right)^2+2012}\left(1\right)\)

để (1) max

<=> 2(x-1)2 +2012 min

mà 2(x-1)2 \(\ge\) 0

<=> 2(x-1)2 +2012 \(\ge\) 2012

<=> 2(x-1)2 +2012 min = 2012 tại x = 1

=> (1) max = \(\frac{2014}{2012}=\frac{1007}{1006}\) tại x = 1

xem thử có đúng hem đi bạn

12 tháng 12 2016

\(A=\frac{2014}{2x^2-4x+2014}=\frac{2014}{\left(2x^2-4x+2\right)+2012}\)

\(=\frac{2014}{2\left(x^2-2x+1\right)+2012}=\frac{2014}{2\left(x-1\right)^2+2012}\)

\(\le\frac{2014}{0+2012}=\frac{2014}{2012}=\frac{1007}{1006}\)

Dấu "=" xảy ra khi \(2\left(x-1\right)^2=0\Rightarrow\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

Vậy \(Max_A=\frac{1007}{1006}\) khi x=1

30 tháng 7 2018

\(A=\dfrac{1}{-x^2+2x-2}\)

A min \(\Leftrightarrow\dfrac{1}{A}\)max

ta có \(\dfrac{1}{A}=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x-1\right)^2-1\le-1\)

\(\dfrac{1}{A}\)max= -1 tại x=1

=> A min = -1 tại x=1

\(B=\dfrac{2}{-4x^2+8x-5}\) ( phải là -4x2 nha bn)

B min \(\Leftrightarrow\dfrac{1}{B}\) max

ta có \(\dfrac{1}{B}=\dfrac{-4x^2+8x-5}{2}=\dfrac{-\left(4x^2-8x+5\right)}{2}=\dfrac{-\left(2x-4\right)^2+11}{2}=\dfrac{\left(-2x-4\right)^2}{2}+\dfrac{11}{2}\le\dfrac{11}{2}\)

\(\dfrac{1}{B}\)max=\(\dfrac{11}{2}\) tại x=2

\(\Rightarrow B\) min = \(\dfrac{1}{\dfrac{11}{2}}=\dfrac{2}{11}\) tại x=2

\(A=\dfrac{3}{2x^2+2x+3}=\dfrac{3}{2\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{5}{2}}=\dfrac{3}{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}\)

A max \(\Leftrightarrow\dfrac{1}{A}\) min

\(\Leftrightarrow\dfrac{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{5}{6}\ge\dfrac{5}{6}\)

\(\dfrac{1}{A}\) min = \(\dfrac{5}{6}\)tại x= \(-\dfrac{1}{2}\)

\(\Rightarrow A\)max = \(\dfrac{6}{5}\) tại x= \(-\dfrac{1}{2}\)

B\(=\dfrac{5}{3x^2+4x+15}=\dfrac{5}{3.\left(x^2+\dfrac{4}{3}x+5\right)}=\dfrac{5}{3\left(x^2+2.x.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{41}{9}\right)}=\dfrac{5}{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}\)

B max \(\Leftrightarrow\dfrac{1}{B}\) min

\(\Leftrightarrow\dfrac{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}{5}=\dfrac{3\left(x+\dfrac{2}{3}\right)^2}{5}+\dfrac{41}{15}\ge\dfrac{41}{15}\)

\(\dfrac{1}{B}\) min = \(\dfrac{41}{15}\) tại x=\(-\dfrac{2}{3}\)

=> \(B\) max = \(\dfrac{15}{41}\) tại x=\(-\dfrac{2}{3}\)

Đây chỉ là gợi ý !! bn pải tự lí luận nha

tik thanghoa

26 tháng 5 2016

\(A=\frac{2014}{2x^2-4x+2014}\)

Ta thấy : A lớn nhất  <=> \(2x^2-4x+2014\)đạt GTNN

Lại có : \(2x^2-4x+2014=2\left(x-1\right)^2+2012\ge2012\)

=> Min \(2x^2-4x+2014\)= 2012

=> Max A = \(\frac{2014}{2012}=\frac{1007}{1006}\Leftrightarrow x=1\)

9 tháng 8 2016

a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)

\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)

\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)

\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)

Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)

Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)

b) \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)

\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)

\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)

Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3

Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)

9 tháng 8 2016

pn ơi , giải thích hộ t câu a vs, t k hiểu rõ lắm