Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
1)
Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y
=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)
Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0 <=> x = -3 và y = -1
=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5 tại x = -3 và y = -1
=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1
2) \(M=2x^4+3x^2y^2+y^4+y^2\)
\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
a,
vì \(\left|2x-1\right|\ge0\Rightarrow A=5-\left|2x-1\right|\le5\)
A đạt giá trị lớn nhất <=> A=5-|2x-1|=5
<=>2x-1=0
<=>2x=1
<=>x=1/2
vậy A đạt giá trị lớn nhất là 5 khi x=1/2
b) Vì \(-|3x+2|\le0;\forall\text{}x\)
\(\Rightarrow-|3x+2|+11\le0+11;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow|3x+2|=0\)
\(\Leftrightarrow x=\frac{-2}{3}\)
Vậy MAX B =11 \(\Leftrightarrow x=\frac{-2}{3}\)
1. 0 giá trị ... Vì giá trị tuyệt đối luôn luôn lớn hơn hoặc bằng không tuy nhiên giá trị cho trước lại không giống nhau nên sẽ không có số nào thỏa mãn .
2. Mình không chắc lắm nhưng mình nghĩ x=0.
3. => 3x2-51=-24 => x2= ( -24+51 ) :3 =9 => x= +3 và -3
hoặc 3x2-51=24 => x2= ( 24+51 ) :3 =25 => x=+5 hoặc -5
Vậy có 4 giá trị thỏa mãn.
4. (1/-2)^40=(1/2)^40=[(1/2)^10]^4=(1/1024)^4
(1/-10)^12=(1/10)^12=[(1/10)^3]^4=(1/1000)^4
=> B <A
5. 41007.52014= (22)1007.52014 ==22.1007.52014=22004.52014=102004
=> có 2015 chữ số
Có: \(\left(3x-2\right)^2\ge0\)
=> \(\frac{13}{\left(3x-2\right)^2+11}\le\frac{13}{11}\)
Vậy GTLN của A là \(\frac{13}{11}\) khi \(3x-2=0\Rightarrow x=\frac{2}{3}\)
Ta có:
\(\left(3x-2\right)^2\ge0\)
\(\Rightarrow\left(3x-2\right)^2+11\ge11\)
\(\Rightarrow A\le\frac{13}{11}\)
Dấu = khi \(3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy MaxA=\(\frac{13}{11}\Leftrightarrow x=\frac{2}{3}\)
\(A=\frac{13}{\left(3x-2\right)^2+11}\)
Vì \(\left(3x-2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(3x-2\right)^2+11\ge0+11;\forall x\)
\(\Rightarrow\frac{13}{\left(3x-2\right)^2+11}\le\frac{13}{11};\forall x\)
Dấu"="xảy ra \(\Leftrightarrow\left(3x-2\right)^2=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
Vậy Max\(A=\frac{13}{11}\)\(\Leftrightarrow x=\frac{2}{3}\)
\(A=-\left|3x-3\right|-\left(4x-4\right)^2-11\le-11\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}3x-3=0\\4x-4=0\end{matrix}\right.\Leftrightarrow x=1\)