\(A=\frac{a^{2014+2013}}{a^{2014+1}}\)

Giúp mình với mình cầ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

\(A=\frac{a^{2014}+2013}{2^{2014}+1}=\frac{a^{2014}+1+2002}{a^{2014}+1}=1+\frac{2012}{a^{2014}+1}\)

Để \(1+\frac{2012}{a^{2014}+1}\) đạt \(GTLN\Rightarrow\frac{2012}{a^{2014}+1}\) đạt \(GTLN\)

\(\Rightarrow a^{2014}+1\) phải nhỏ nhất

\(\Rightarrow a^{2014}+1\ge1\)

Dấu "=" xảy ra khi \(a^{2014}=0\Rightarrow a=0\)

\(\Rightarrow GTLN\) của \(A\)\(2013\) tại \(a=0\)

15 tháng 2 2017

Cảm ơn bạn nha!

15 tháng 3 2017

\(\left(x-3,5\right)^2\ge0\Rightarrow GTNN=1....x=3,5\)

15 tháng 3 2017

Ta có \(:\)\(\left(x-3,5\right)^2\ge0\forall x\in R\)

Để \(\left(x-3,5\right)^2+1\)nhỏ nhất \(\Leftrightarrow\left(x-3,5\right)^2=0\Rightarrow x=3,5\)

\(\Rightarrow\left(x-3,5\right)^2+1=0+1=1\)

Vậy giá trị nhỏ nhất của \(\left(x-3,5\right)^2+1\)là \(1\)tại \(x=3,5\)

7 tháng 3 2017

Vì \(\left|y-2\right|\ge0\forall y\)

\(\Rightarrow\left|y-2\right|-3\ge-3\forall y\)

Dấu "=" xảy ra <=> |y - 2| = 0 => y = 2

Vậy GTNN của \(\left|y-2\right|-3\) là - 3 tại y = 2

Vì \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2-19\ge-19\forall x\)

Dấu "=" xảy ra <=>\(\left(x+1\right)^2=0\Rightarrow x=-1\)

Vậy ......................

7 tháng 3 2017

Cảm ơn bạn nhiều nha!!!

Vì |x−2013|≥0⇒|x−2013|+2≥2

⇒A=\(\frac{2026}{\left|x-2013\right|+2}\) ≤1013

=>A đạt giá trị lớn nhất là 1013 khi  |x−2013|=0

                                                     ⇔x−2013=0

                                                     ⇔x=2013

Vậy A đạt giá trị lớn nhất là 1013 khi x=2013

31 tháng 10 2019

Câu hỏi của Nguyễn Quỳnh Chi - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

7 tháng 3 2016

A lớn nhất<=>a2014+1 nhỏ nhất

a2014 >= 0

=>a2014+1 >= 1

=>AMax=2013/1=2013

dấu "=" xảy ra<=>a=0

13 tháng 3 2016

A lớn nhất<=>a2014+1 nhỏ nhất

a2014 >= 0

=>a2014+1 >= 1

=>AMax=2013/1=2013

dấu "=" xảy ra<=>a=0

8 tháng 3 2018

Các bn ơi giúp mk với.....

2 tháng 9 2018

\(a,\left|3x-1\right|=\left|5-2x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5-2x\\3x-1=2x-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=6\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{6}{5}\\x=-4\end{cases}}\)

b,\(\left|2x-1\right|+x=2\)

\(\Leftrightarrow\left|2x-1\right|=2-x\)

Điều kiện \(2-x\ge0\Leftrightarrow x\le2\)

\(\Rightarrow\orbr{\begin{cases}2x-1=2-x\\2x-1=x-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=3\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{nhận}\right)\end{cases}}}\)

2 tháng 9 2018

c.\(A=0,75-\left|x-3,2\right|\)

Vì \(\left|x-3,2\right|\ge0\Rightarrow0,75-\left|x-3,2\right|\le0,75\)

Dấu "=' xảy ra \(\Leftrightarrow x-3,2=0\Leftrightarrow x=3,2\)

Vậy Max A = 0,75 khi x = 3,2

\(d,B=2.\left|x+1,5\right|-3,2\)

Vì 2. |x + 1,5| ≥ 0 => B ≥ -3,2

Dấu " = ' xảy ra khi \(2\left|x+1,5\right|=0\)

\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\)

Vậy Min B = -3,2 khi x = -1,5

18 tháng 12 2016

1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab

=>(a+b/)2ab-1/h=0

quy dong len ta co

(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0

                                                                       =>ah+bh-ab-ab=0

                                                                         =>a(h-b)-b(a-h)=0  

                                                                           =>a(h-b)=b(a-h)

                                                                              =>a/b=(a-h)(h-b)

                                                                       

15 tháng 3 2017

\(P\ge!x-3!+x^2+1\ge!x^2-x+3!+1\ge!\left(x-\frac{1}{2}\right)^2+\frac{3}{4}!+1\ge\frac{7}{4}\)

Đẳng thức khi y=0 ; x=1/2