Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|\(x\)| = 1 ⇒ (|\(x\)|)2 = 1 ⇒ \(x^2\) = 1
Thay \(x^2\) = 1 vào biểu thức: M = (\(x^{2^{ }}\) + a)(\(x^2\) + b)(\(x^2\) + c) ta có:
M = (1 + a)(1 + b)(1 + c)
M = (1 + b + a + ab)(1 + c)
M = 1 + b + a + ab + c + bc + ac + abc
M = 1 + ( a + b + c) + (ab + bc + ac) + abc
M = 1 + 2 + (-5) + 3
M = (1+2+3) - 5
M = 1
1.Tìm giá trị lớn nhất của:
A = 0,5 - |x - 3,5|
Để A đạt GTLN thì |x-3,5| đạt GTNN
Mà |x-3,5| >/ 0
=> |x-3,5| = 0
Vậy GTLN của A là 0,5 - |x-3,5| =0,5 -0 =0,5.
B = - |1,4 - x| - 2
Để B đạt GTLN thì -|1,4 -x| đạt GTLN
mà -|1,4 -x| \< 0
=> -|1,4 -x| =0
Vậy GTLN của B là -|1,4-x| -2 = 0-2 =-2
2.Tìm giá trị nhỏ nhất của:
C = 1,7 + |3,4 - x|
Để C đạt GTNN thì |3,4 -x| đạt GTNN
mà |3,4 -x| >/ 0
=> |3,4 -x| = 0
Vậy GTNN của C là 1,7 +|3,4-x|= 1,7 +0 =1,7
D = |x + 2,8| - 3,5
Để D đạt GTNN thì |x+2,8| đạt GTNN
mà |x+2,8| >/ 0
=> |x+2,8| =0
Vậy GTNN của D là |x+2,8| -3,5 = 0- 3,5 = -3,5
1.
A = 0,5 - / x - 3,5 /
= 0,5 - / x - 3,5 / \(\ge\)0,5 do trị tuyệt đối luôn dương
Max A =0,5 khi x - 3,5 = 0 => x = 3,5
B = Tương tự z thôi
Max B = -2 khi 1,4 - x = 0 => x = 1,4
2.
C tương tụ
Min C = 1,7 khi 3,4 - x = 0 => x= 3,4
D cũng z
Min D = -3,5 khi x + 2,8 = 0 => x= -2,8
Ủng hộ nha
Thanks
Để biểu thức đã cho đạt giá trị lớn nhất thì (x² - 9)⁴ và -|2x + 6| - (x² - 9)⁴ đạt giá trị lớn nhất
Mà (x² - 9)⁴ ≥ 0 với mọi x ∈ R
⇒ (x² - 9)⁴ = 0 là giá trị nhỏ nhất
⇒ x² - 9 = 0
⇒ x² = 9
⇒ x = 3 hoặc x = -3
*) x = 3
⇒ -|2x + 6| = -12
*) x = -3
⇒ -|2x + 6| = 0
Vậy giá trị lớn nhất của biểu thức đã cho là 2023 khi x = -3
A = -\(x^2\) - 0,75
\(x^2\) ≥ 0 ∀ \(x\) ⇒ -\(x^2\) ≤ 0 ⇒ - \(x^2\) - 0,75 ≤ -0,75
Amax = -0,75 ⇔ \(x\) = 0
Do x² ≥ 0 với mọi x ∈ R
⇒ -x² ≤ 0 với mọi x ∈ R
⇒ -x² - 0,75 ≤ -0,75 với mọi x ∈ R
Vậy GTLN của A là -0,75 khi x = 0
1 ) \(f\left(3\right)\Rightarrow x=3\)
Vì \(3< 5\Rightarrow f\left(3\right)=-2.3+7,3=-6+7,3=1,3\)
2 ) Để \(A=x-\left|x\right|\) đạt GTLN <=> \(\left|x\right|\)đạt GTNN
Mà \(\left|x\right|\ge0\forall x\) => \(\left|x\right|\) có GTNN là 0 tại x = 0
=> \(A=x-\left|x\right|\)có GTLN là 0 tại x = 0