Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2+4x+3\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\le7\)
Dấu = khi \(-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(Max_A=7\Leftrightarrow x=2\)
\(\dfrac{4x^2}{x^4+1}=\dfrac{-\left(4x^2+4x+1\right)+8x^2+4x+1}{x^4+1}\)
\(=-\dfrac{\left(2x+1\right)^2}{x^4+1}+\dfrac{8x^2+4x+1}{x^4+1}\)
mà \(-\dfrac{\left(2x+1\right)^2}{x^4+1}\le0\)
vậy M đạt GTLN khi x=-0,5
thay x=-0,5 vào biểu thức\(\dfrac{8x^2+4x+1}{x^4+1}\) , ta được KQ là \(\dfrac{16}{17}\)
vậy GTLN của M là \(\dfrac{16}{17}\) tại x=-0,5
A=-(x^2-4x+4-4)
=-(x-2)^2+4<=4
Dấu = xảy ra khi x=2
B=-(x^2-4x-2)
=-(x^2-4x+4-6)
=-(x-2)^2+6<=6
Dấu = xảy ra khi x=2
\(A=4x-x^2=-\left(x^2-4x+4\right)+4\)
\(=-\left(x-2\right)^2+4\le4\)
\(maxA=4\Leftrightarrow x=2\)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`