Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 x 2 - 8 x - 10
= 2 x 2 - 4 x + 4 - 18 = 2 x - 2 2 - 18
Do 2 x - 2 2 ≥ 0 với mọi x ⇒ 2 x - 2 2 – 18 ≥ −18
A = -18 khi và chỉ khi x - 2 = 0 hay x = 2
Do đó giá trị nhỏ nhất của biểu thức A bằng -18 tại x = 2
Lời giải:
$A=(x^2+4y^2+4xy)+x^2+5-8x-12y$
$=(x+2y)^2-6(x+2y)+x^2+5-2x$
$=(x+2y)^2-6(x+2y)+9+(x^2-2x+1)-5$
$=(x+2y-3)^2+(x-1)^2-5\geq 0+0-5=-5$
Vậy $A_{\min}=-5$. Giá trị này đạt được khi $x+2y-3=x-1=0$
$\Leftrightarrow x=1; y=1$
\(A=\left(x-3\right)^2+21\)
Vì: \(\left(x-3\right)^2\ge0\)
=> \(\left(x-3\right)^2+21\ge21\)
Vậy GTNN của A là 21 khi x=3
\(M=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+4\right)^2+21\)
Vì: \(-\left(x+4\right)^2\le0\)
=> \(-\left(x+4\right)^2+21\le21\)
Vậy GTLN của M là 21 khi x=-4
\(A=x^4+2x^2-8x+2019\) \(=x^4-2x^2+1+4x^2-8x+4+2014\)
\(=\left(x^2-1\right)^2+4\left(x-1\right)^2+2014\ge2014\forall x\)
" = " \(\Leftrightarrow x=1\)
8x - 2x^2 + 5
= -2x^2 + 8x + 5
= -2( x^2 + 4x +4 ) +1
=. -2( x+2)^2 +1
đến đây tự làm nhé
Lời giải:
Ta thấy:
$2x^2+2x+5=2(x^2+x+\frac{1}{4})+\frac{9}{2}$
$=2(x+\frac{1}{2})^2+\frac{9}{2}\geq 0+\frac{9}{2}=\frac{9}{2}$
$\Rightarrow N=\frac{1}{2x^2+2x+5}\leq \frac{2}{9}$
Vậy $N_{\max}=\frac{2}{9}$. Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}$
Đặt A = 8x - 2x2 + 5
= -2x2 + 8x + 5
= -2( x2 -4x + 4 ) + 13
= -2(x - 2 )2 + 13
Ta có : (x-2)2 \(\ge\) 0
<=> -2(x-2)2 \(\le\) 0
<=> -2(x - 2 )2 + 13 \(\le\)13
Vậy : Amax = 13 , [ khi (x-2)^2 = 0 khi x = 2 ]
\(8x-2x^2+5=-2\left(x^2-4x+4\right)+13\le13\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)
vậy max =13 tại x=2
8x - 2x^2 + 5
= - 2x^2 + 8x + 5
= - 2(x^2 + 4x + 4) + 3
=> -2( x+2)^2 + 3
nhận xét
-2(x+2)^2 < =0
=> -2(x+2)^2 + 3 < = 3
dấu = xảy ra khi
x+ 2 = 0
=> x= -2
mình nhầm nha bạn, phải là -8x2