K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

18 tháng 12 2016

\(A=\frac{3x^2+9x+17}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}\)

Có: \(3x^2+9x+7=3\left(x^2+3x+\frac{9}{4}\right)+\frac{1}{4}=3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)

Vì: \(3\left(x+\frac{3}{2}\right)^2\ge0,\forall x\)

=> \(3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

=>\(\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}}\le40\)

=> \(1+\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{41}{4}}\le41\)

Vậy GTLN của A là \(\frac{81}{41}\) khi \(x=-\frac{3}{2}\)

18 tháng 12 2016

HELP ME !!!

2 tháng 2 2021

undefined

6 tháng 8 2021

Ta có: A=2x2-3x+1=\(2\left(x^2-2.\dfrac{3}{4}+\dfrac{9}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)

Vì \(2\left(x-\dfrac{3}{4}\right)^2\ge0\)

 \(\Rightarrow A\ge-\dfrac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

Vậy,Min \(A=\dfrac{-1}{8}\Leftrightarrow x=\dfrac{3}{4}\)

4 tháng 3 2022

\(M=\dfrac{4a}{a^2+4}=\dfrac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\dfrac{\left(a-2\right)^2}{a^2+4}\)

-Vì \(\left(a-2\right)^2\ge0;a^2+4>0\) nên \(\dfrac{\left(a-2\right)^2}{a^2+4}\ge0\)

\(\Rightarrow M=1-\dfrac{\left(a-2\right)^2}{a^2+4}\le1\)

\(M_{max}=1\Leftrightarrow\dfrac{\left(a-2\right)^2}{a^2+4}=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a-2=0\Leftrightarrow a=2\).

29 tháng 5 2017

Ta có :

\(\frac{3x^2-6x+17}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}\)

Biểu thức đạt giá trị lớn nhất 

<=> x2 - 2x + 5 nhỏ nhất 

Ta lại có :

x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4 

Vì \(\left(x-1\right)^2\ge0\)

=> \(\left(x-1\right)^2+4\ge4\)

=> \(Min=4\)

Vậy giá trị lớn nhất của biểu thức là :

\(3+\frac{2}{4}=3+\frac{1}{2}=\frac{7}{2}\)

29 tháng 5 2017

\(\frac{3x^2-6x+17}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}=3+\frac{2}{\left(x-1\right)^2+4}\) (1)

Vì \(\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\frac{2}{\left(x-1\right)^2+4}\le\frac{2}{4}=\frac{1}{2}\forall x\)

\(\Rightarrow3+\frac{2}{\left(x-1\right)^2+4}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)

Dấu "=" xảy ra <=> \(x=1\)

Vậy ..........