Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\left(x-3\right)^2\ge0\)
=> \(-17-\left(x-3\right)^2\le-17\)với mọi x
Dấu "=" xảy ra khi và chỉ khi (x - 3)2 = 0
<=> x - 3 = 0
<=> x = 3
Vậy GTLN của -17 - (x - 3)2 là -17 khi và chỉ khi x = 3
2) Ta có: \(\left(x-1\right)^2\ge0\)với mọi x
=> \(-9+\left(x-1\right)^2\ge-9\)
Dấu "=" xảy ra khi và chỉ khi (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy GTNN của -9 + (x - 1)2 là -9 khi và chỉ khi x = 1
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
-17 - (x - 3)2 lớn nhất
=> (x - 3)2 nhỏ nhất
Mà (x- 3)2 \(\ge0\)
Do đó x -3 = 0 => x = 3
Vậy -17 - (x - 3)2 = -17
Vậy Biểu thức lớn nhất khi nó = -17 và x = 3
Vì \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\le-17\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amax = -17 <=> x = 3