K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Viết lại (3x−4)2(3x-4)2 như (3x−4)(3x−4)(3x-4)(3x-4) .

(3x−4)(3x−4)(3x-4)(3x-4)

Mở rộng (3x−4)(3x−4)(3x-4)(3x-4) sử dụng phương pháp FOIL .

Chạm để có thêm bước ...

3x(3x)+3x⋅−4−4(3x)−4⋅−43x(3x)+3x⋅-4-4(3x)-4⋅-4

Đơn giản và kết hợp như các thuật ngữ .

Chạm để có thêm bước ...

9x2−24x+16

11 tháng 1 2018

Thanks!!!!!

17 tháng 5 2022

Tham khảo :

17 tháng 5 2022

    `-2x^2+3x+4`

`=-2(x^2-3/2x-2)`

`=-2(x^2-2.x. 3/4+9/16-41/16)`

`=-2(x-3/4)^2+41/8`

 Vì `-2(x-3/4)^2 <= 0 AA x`

`<=>-2(x-3/4)^2+41/8 <= 41/8 AA x`

 Hay `-2x^2+3x+4 <= 41/8 AA x`

Dấu "`=`" xảy ra `<=>(x-3/4)^2=0<=>x-3/4=0<=>x=3/4`

Vậy GTLN của biểu thức là `41/8` khi `x=3/4`

2 tháng 4 2021

Trả lời:

Tìm GTLN của A=\(\frac{3x^2+14}{x^2+4}\)

=> tìm Max A=3+ \(\frac{2}{x^2+4}\)

A Max khi x2+4 min

mà x2+4>=4

=> A đạt GTLN khi X2+4=4 (tức x=0)

Với x=0, ta có: A= 14/4=7/2

2 tháng 4 2021

\(A=\frac{3x^2+14}{x^2+4}=\frac{3\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

Vì x2 + 4 ≥ 4 ∀ x

=> 2/x2 + 4 ≤ 1/2 ∀ x

=> 2/x2 + 4 + 3 ≤ 7/2 ∀ x

Đẳng thức xảy ra <=> x = 0

Vậy MaxA = 7/2

4 tháng 11 2016

- 2x2 + 3x + 4 = - (2x2 - \(\frac{2.\sqrt{2}.3.x}{2\sqrt{2}}\)\(\frac{9}{8}\)) + 4 + \(\frac{9}{8}\)

\(\frac{41}{8}-\left(\sqrt{2}x-\frac{3}{2\sqrt{2}}\right)^2\ge\frac{41}{8}\)

4 tháng 11 2016

GTLN:4

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

26 tháng 7 2018

1, \(3x^2-5x+4\)

\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)

Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)

2, Bạn thử kiểm tra lại đề bài xem