\(\frac{\sqrt[3]{x}-1}{\sqrt[3]{4x+4}-2}\)là

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2020

\(A=\lim\limits_{x\rightarrow0}\frac{\left(x+1\right)^{\frac{1}{3}}-1}{\left(2x+1\right)^{\frac{1}{4}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(x+1\right)^{-\frac{2}{3}}}{\frac{1}{2}\left(2x+1\right)^{-\frac{3}{4}}}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}\)

\(B=\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}\sqrt{x-2}}{\sqrt[4]{2x+2}-2}=\frac{3\sqrt{5}}{0}=+\infty\)

\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt{\left(3x+1\right)\left(4x+1\right)}\left(\sqrt{2x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}\left(\sqrt{3x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}-1}{x}\)

Xét \(\lim\limits_{x\rightarrow0}\frac{\sqrt{ax+1}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\left(ax+1\right)^{\frac{1}{2}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{2}\left(ax+1\right)^{-\frac{1}{2}}}{1}=\frac{a}{2}\)

\(\Rightarrow C=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}=\frac{9}{2}\)

\(D=\lim\limits_{x\rightarrow0}\frac{\left(1+4x\right)^{\frac{1}{2}}-\left(1+6x\right)^{\frac{1}{3}}}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\left(1+4x\right)^{-\frac{1}{2}}-2\left(1+6x\right)^{-\frac{2}{3}}}{2x}\)

\(D=\lim\limits_{x\rightarrow0}\frac{-2\left(1+4x\right)^{-\frac{3}{2}}+4\left(1+6x\right)^{-\frac{5}{3}}}{1}=-2+4=2\)

\(E=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-\left(1+bx\right)^{\frac{1}{n}}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}-\frac{b}{n}\left(1+bx\right)^{\frac{1-n}{n}}}{1}=\frac{a-b}{n}\)

NV
2 tháng 4 2020

Vì câu đó ko phải dạng vô định, nó là 1 giới hạn bình thường.

Mình đoán bạn ghi nhầm đề, đề bài là \(\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}-\sqrt{x+2}}{\sqrt[4]{2x+2}-2}\) thì hợp lý hơn, đây là 1 giới hạn vô định \(\frac{0}{0}\)

NV
16 tháng 3 2020

\(a=\lim\limits_{x\rightarrow0}\frac{x^2}{x\left(\sqrt{1+x^2}+1\right)}=\lim\limits_{x\rightarrow0}\frac{x}{\sqrt{1+x^2}+1}=\frac{0}{2}=0\)

\(b=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2+2-\sqrt{5-x^2}}{x-1}=\lim\limits_{x\rightarrow1}\frac{\frac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}+\frac{\left(x-1\right)\left(x+1\right)}{2+\sqrt{5-x^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\frac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}+\frac{x+1}{2+\sqrt{5-x^2}}\right)=\frac{1}{12}+\frac{1}{2}=\frac{7}{12}\)

\(c=\lim\limits_{x\rightarrow0}\frac{2x}{x\left(\sqrt[3]{\left(1+x\right)^2}+\sqrt[3]{\left(1+x\right)\left(1-x\right)}+\sqrt[3]{\left(1-x\right)^2}\right)}=\lim\limits_{x\rightarrow0}\frac{2}{\sqrt[3]{\left(1+x\right)^2}+\sqrt[3]{\left(1+x\right)\left(1-x\right)}+\sqrt[3]{\left(1-x\right)^2}}=\frac{2}{3}\)

\(d=\frac{\sqrt[3]{6}}{0}=+\infty\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Lời giải:

\(\lim\limits _{x\to +\infty}\sqrt{\frac{3x^4+4x^5+2}{9x^5+5x^4+4}}=\lim\limits _{x\to +\infty}\sqrt{\frac{\frac{3}{x}+4+\frac{2}{x^5}}{9+\frac{5}{x}+\frac{4}{x^5}}}=\sqrt{\frac{4}{9}}=\frac{2}{3}\)

Đáp án B.

NV
5 tháng 4 2020

\(a=\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-3+3-\sqrt{x+7}}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{\frac{8\left(x-2\right)}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{x-2}{9+\sqrt{x+7}}}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow2}\frac{\frac{8}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{1}{9+\sqrt{x+7}}}{x-1}=\frac{29}{36}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(2-\frac{3}{x}\right)^2.x^3\left(4+\frac{7}{x}\right)^3}{x^3\left(3+\frac{1}{x^3}\right).x^2\left(10+\frac{9}{x^2}\right)}=\frac{2.4}{3.10}=\frac{4}{15}\)

\(c=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+4x}-\left(2x+1\right)+\left(2x+1-\sqrt[3]{1+6x}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\frac{\frac{-4x^2}{\sqrt{1+4x}+2x+1}+\frac{8x^3+12x^2}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\left(\frac{-4}{\sqrt{1+4x}+2x+1}+\frac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}\right)=\frac{-4}{1+1}+\frac{12}{1+1+1}=2\)

NV
5 tháng 4 2020

\(d=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+6x}\left(\sqrt{1+4x}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{1+6x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\frac{4x\sqrt{1+6x}}{x\left(\sqrt{1+4x}+1\right)}+\lim\limits_{x\rightarrow0}\frac{6x}{x\left(\sqrt{1+6x}+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\frac{4\sqrt{1+6x}}{\sqrt{1+4x}+1}+\lim\limits_{x\rightarrow0}\frac{6}{\sqrt{1+6x}+1}=\frac{4}{1+1}+\frac{6}{1+1}=5\)

\(e=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+4x}\left(\sqrt{1+2x}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+4x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\frac{2x\sqrt[3]{1+4x}}{x\left(\sqrt{1+2x}+1\right)}+\lim\limits_{x\rightarrow0}\frac{4x}{x\left(\sqrt[3]{\left(1+4x\right)^2}+\sqrt[3]{1+4x}+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\frac{2\sqrt[3]{1+4x}}{\sqrt{1+2x}+1}+\lim\limits_{x\rightarrow0}\frac{4}{\sqrt[3]{\left(1+4x\right)^2}+\sqrt[3]{1+4x}+1}=\frac{2}{1+1}+\frac{4}{1+1+1}=\frac{7}{3}\)

15 tháng 3 2020

a) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}=\lim\limits_{x\rightarrow0}\frac{2x}{2x\left(\sqrt{1+2x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{1+2x}+1}=\frac{1}{2}\)

b) \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}=\lim\limits_{x\rightarrow0}\frac{4x\left(\sqrt{9+x}+3\right)}{x}=\lim\limits_{x\rightarrow0}[4\left(\sqrt{9+x}+3\right)=24\)

c) \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}=\lim\limits_{x\rightarrow2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\frac{1}{\sqrt{x+7}+3}=\frac{1}{6}\)

d) \(\lim\limits_{x\rightarrow1}\frac{3x-2-\sqrt{4x^2-x-2}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\frac{\left(3x-2\right)^2-\left(4x^2-4x-2\right)}{(x^2-3x+2)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(5x-6\right)}{\left(x-1\right)\left(x-2\right)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\frac{1}{2}\\ \\\\ \\ \\ \\ \)

e)\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\frac{2x+7-\left(x^2-8x+16\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x-9\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{x-9}{\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=-8\)

f) \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}=\lim\limits_{x\rightarrow1}\frac{(2x-2)\left(2+\sqrt{x+3}\right)}{\left(1-x\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\frac{-2\left(2+\sqrt{x+3}\right)}{\sqrt{2x+7}+3}=\frac{-4}{3}\)

g) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}=\lim\limits_{x\rightarrow0}\frac{x^2\left(\sqrt{x^2+16}+4\right)}{x^2\left(\sqrt{x^2+1}+1\right)}=4\)

h)

\(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-3}{x-4}+\lim\limits_{x\rightarrow4}\frac{3-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{1}{\sqrt{x+5}+4}+\lim\limits_{x\rightarrow4}\frac{8-2x}{\left(x-4\right)\left(3+\sqrt{2x+1}\right)}=\frac{1}{7}-\frac{1}{3}=\frac{-4}{21}\)

k) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+1}+1}+\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+4}+2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

NV
27 tháng 2 2020

Bạn tự hiểu là lim:

\(=\frac{\left(x^2-x-2\right)}{\left(4x-8\right)}.\frac{\left(\sqrt{4x+1}+3\right)}{\left(x+\sqrt{x+2}\right)}=\frac{\left(x+1\right)\left(x-2\right)}{4\left(x-2\right)}.\frac{\left(\sqrt{4x+1}+3\right)}{\left(x+\sqrt{x+2}\right)}=\frac{\left(x+1\right)}{4}.\frac{\left(\sqrt{4x+1}+3\right)}{\left(x+\sqrt{x+2}\right)}\)

\(=\frac{3\left(\sqrt{9}+3\right)}{4\left(2+\sqrt{4}\right)}=...\)

NV
13 tháng 5 2020

\(L_1=\lim\limits_{x\rightarrow0}\frac{x\left(x^2+3x-2\right)}{x\left(x^4+4\right)}=\lim\limits_{x\rightarrow0}\frac{x^2+3x-2}{x^4+4}=-\frac{1}{2}\)

\(L_2=\lim\limits_{x\rightarrow+\infty}\frac{1-\frac{3}{x^2}+\frac{2}{x^3}}{\left(\frac{4}{x}-2\right)^3}=\frac{1}{\left(-2\right)^3}=-\frac{1}{8}\)

\(L_3=\lim\limits_{x\rightarrow-1}\frac{\left(2x+1\right)\left(x+1\right)}{x\left(x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{2x+1}{x}=1\)

\(L_4=\lim\limits_{x\rightarrow2}\frac{x^2-4x+1}{4-x^2}=\frac{1}{0}=+\infty\)

\(L_5=\lim\limits_{x\rightarrow3}\frac{\sqrt{x+1}-2}{x-2}=\frac{0}{1}=0\)

\(L_6=\lim\limits_{x\rightarrow1}\frac{x+3-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{-\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{-\left(x+2\right)}{\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\frac{-3}{2.4}=-\frac{3}{8}\)

\(L_7=\lim\limits_{x\rightarrow+\infty}\frac{x^2+x+1-\left(x-1\right)^2}{\sqrt{x^2+x+1}+x-1}\lim\limits_{x\rightarrow+\infty}\frac{3x}{\sqrt{x^2+x+1}+x-1}=\lim\limits_{x\rightarrow+\infty}\frac{3}{\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1-\frac{1}{x}}=\frac{3}{2}\)

\(L_8=\lim\limits_{x\rightarrow-\infty}\frac{x^2+x+1-\left(3x-2\right)^2}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8x^2+13x-3}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8+\frac{13}{x}-\frac{3}{x^2}}{-\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+3-\frac{2}{x}}=\frac{-8}{-1+3}=-4\)

NV
27 tháng 2 2020

\(=\frac{\left|x\right|\sqrt{1+\frac{2}{x}}+3x}{\left|x\right|\sqrt{4+\frac{1}{x^2}}-x+3}=\frac{-x\left(\sqrt{1+\frac{2}{x}}-3\right)}{-x\left(\sqrt{4+\frac{1}{x^2}}+1+\frac{3}{x}\right)}=\frac{1-3}{2+1+0}=...\)