Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\hept{\begin{cases}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2018}\ge0\forall y\end{cases}\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2018}\ge0\forall x,y}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2018}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\2y=1\end{cases}}}\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Khi đó : \(M=11.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2=\frac{11.4}{2}+\frac{4.2}{4}=22+2=24\)
Vậy M = 24
1. 0 giá trị ... Vì giá trị tuyệt đối luôn luôn lớn hơn hoặc bằng không tuy nhiên giá trị cho trước lại không giống nhau nên sẽ không có số nào thỏa mãn .
2. Mình không chắc lắm nhưng mình nghĩ x=0.
3. => 3x2-51=-24 => x2= ( -24+51 ) :3 =9 => x= +3 và -3
hoặc 3x2-51=24 => x2= ( 24+51 ) :3 =25 => x=+5 hoặc -5
Vậy có 4 giá trị thỏa mãn.
4. (1/-2)^40=(1/2)^40=[(1/2)^10]^4=(1/1024)^4
(1/-10)^12=(1/10)^12=[(1/10)^3]^4=(1/1000)^4
=> B <A
5. 41007.52014= (22)1007.52014 ==22.1007.52014=22004.52014=102004
=> có 2015 chữ số
(x-2)2 <= 0 <=>(x-2)2=0 và (x-2)2 < 0
mà (x-2)2>= 0 với mọi x
=>(x-2)2=0<=>x-2=0<=>x=2
vậy x=2
(x-2)2 <= 0 <=>(x-2)2=0 và (x-2)2 < 0
mà (x-2)2>= 0 với mọi x
=>(x-2)2=0<=>x-2=0<=>x=2
vậy x=2
1. 3x2 - 50x = 0 <=> x(3x - 50) = 0
=> x = 0 hoặc 3x - 50 = 0 hay x = 50/3
2. 23x + 2 = 4x + 5 <=> 23x + 2 = 22x + 10
=> 3x + 2 = 2x + 10 => x = 8
3. C = (x2 + 13)2 =( x4 + 26x2) + 169
Ta thấy: ( x4 + 26x2)\(\ge\)0 nên ( x4 + 26x2) + 169 \(\ge\) 0 + 169
dấu bằng xảy ra khi ( x4 + 26x2) = 0 => GTNN của C = 169
4. \(\frac{3}{x+1}\)có giá trị nguyên khi và chỉ khi 3 chia hết cho x + 1
hay x + 1 \(\in\)Ư(3)={ -1;2;-3;3}
x \(\in\){-2;1;-4;2}
Vậy số nguyên x nhỏ nhất là - 4 để \(\frac{3}{x+1}\) có giá trị nguyên
Ta có: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}\ge0\\\left(3y+4\right)^{2022}\ge0\end{cases}}\left(\forall x,y\right)\)
\(\Rightarrow\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\ge0\left(\forall x,y\right)\)
Mà theo đề bài ta có: \(\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\le0\)
Nên từ đó suy ra: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}=0\\\left(3y+4\right)^{2022}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2021x-1=0\\3y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2021}\\y=-\frac{4}{3}\end{cases}}\)
Khi đó \(M=2021\cdot\frac{1}{2021}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(=-\frac{4}{3}-\frac{16}{9}=-\frac{28}{9}\)
với x=0=>(x+1)(x++2)(x+3)(x+4)=24 (TM)
VỚI C<0 THÌ VT >24(TRÁI GIẢ THIẾT)
Vậy ..........
\(Tadellco:\left(to\right)\)
Ta dễ nhận thấy rằng: (x+1);(x+2);(x+3);(x+4) là 4 stn liên tiếp
Phân tích 24 ra thừa số nguyên tố
=> 24=1.2.3.4
=> x=0