Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+y4=x4+2x2y2+y4-2(xy)2
=(x2+y2)2-2(xy)2
=152-2.62
=225-72=153
(x^2+y^2)^2=225
x^4+2x^2y^2+y^4=225
x^4+2(xy)^2+y^4=225
x^4+2.6^2+y^4=225
x^4+y^4=153
1, \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=15^2-2.6^2=153\)
2, chú ý: \(n^2-\left(n+1\right)^2=-\left(2n+1\right)\)
\(M=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2015^2-2016^2\right)+2017^2\)
\(=-3-7-11-...-4031+2017^2\)
\(=-1008.4034+2017^2=2017^2-2017.2016=\)\(2017\left(2017-2016\right)=2017\)
Từ x2+y2= 15 và xy=6 ta có hệ pt
\(\hept{\begin{cases}^{x^2+y^2=15}\\x=\frac{6}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\frac{6}{y}\right)^2+y^2=15\Leftrightarrow36+y^4-15y^2=0\left(1\right)\\x=\frac{6}{y}\end{cases}}\)
giải pt (1)\(y^4-15y^2+36=y^4-3y^2-12y^2+36=y^2\left(y^2-3\right)-12\left(y^2-3\right)\)
tiếp \(\left(y^2-3\right)\left(y^2-12\right)=0\Leftrightarrow\orbr{\begin{cases}y^2=3\Rightarrow x^2=\frac{36}{3}=12\\y^2=12\Rightarrow x^2=\frac{36}{12}=3\end{cases}}\)
Không mất tính tổng quát nên x4+y4=(x2)2+(y2)2=122+32=153
~ Bài 1:
Ta có: 1+2+...+232=\(\frac{\left(232+1\right)232}{2}\)=27028
Mà : 1+2+...+232=2n-1
Nên 2n-1 =27028
2n =27029
n =13514,5
Vậy n =13514,5
~ Bài 2:
Giả sử: \(x^4+y^4=z\) (1)
Có: xy=6
=> 2xy=12
Do đó: 2xyxy=12.6
\(2x^2y^2\)=72 (2)
Cộng (1),(2) vế theo vế:
\(x^4+2x^2y^2+y^4=72+z\)
\(\left(x^2+y^2\right)^2=72+z\)
\(15^2=72+z\)
225 =72+z
=> z =153
Vậy \(x^4+y^4=153\)
(x^2+y^2)^2=x^4+y^4+2(xy)^2=(x^4+y^4)+2.6^2=15^2=>x^4+y^4=15^2-2.36=36(25-2.4)=36.17
1/ B = (x+y)((x+y)2 - 3xy)+(x+y)2 - 2xy = 2 - 5xy = 2 - 5x(1-x)=5x2 - 5x + 2 = (x√5 - √5 /2)2 +3/4 >= 3/4
Đạt GTNN là 3/4 khi x=y=1/2
2/ P = xy = x(6-x)=-x2 +6x = 9 - (x-3)2 <=9
GTLN là 9 khi x=y=3
a) Theo bài ra , ta có :
x2 + y2 = 56
và xy 20 =) 2xy = 20 x 2 = 40
Lại có :
(x-y)2 = x2 - 2xy + y2 = x2 + y2 - 2xy = 56 - 40 = 16
b) Theo bài ra ta có :
x2 - y2 = 60 =) (x-y)(x+y) = 60
mà x+y = 4
=) x-y = 60:(x+y)
=) x-y = 60 : 4
=) x-y = 15
Chúc bạn học tốt =))
Ta có: ( x4 + y4 ) = ( x2 + y2 )2 - 2 . x2 . y2
= ( x2 + y2 )2 - 2 . xy . xy
= 152 - 2 . 6 . 6
= 225 - 72
= 153