Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tỷ lệ thức tương đương:
(2x+3)(10x+2) = (5x+2)(4x+5)
=> 20x2 + 30x + 4x + 6 = 20x2 + 8x + 25x +10
=> 20x2 + 30x + 4x - 20x2 - 8x - 25x = 10 - 6
=> x = 4
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\left(2x+3\right)-\left(4x+5\right)}{2\left(5x+2\right)-\left(10x+2\right)}=\frac{1}{2}\)
=> \(\frac{2x+3}{5x+2}=\frac{1}{2}\) => 2(2x+3) = 5x+ 2 => 4x + 6 = 5x + 2 => 6 - 2 = 5x - 4x => 4 = x
Vậy x = 4
Ta có: \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right).\left(4x+5\right)\)
\(\Rightarrow20x^2+4x+30x+6=10x^2+25x+8x+10\)
\(\Rightarrow34x+6=33x+10\)
\(\Rightarrow34x-33x=-6+10\)
\(\Rightarrow x=4\)
Ta có:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(\Rightarrow20x^2+34x+6=20x^2+33x+10\)
\(\Rightarrow\left(20x^2+34x+6\right)-\left(20x^2+33x+6\right)=\left(20x^2+33x+10\right)-\left(20x^2+33x+6\right)\)
\(\Rightarrow\left(20x^2-20x^2\right)+\left(34x-33x\right)+\left(6-6\right)=\left(20x^2-20x^2\right)+\left(33x-33x\right)+\left(10-6\right)\)
\(\Rightarrow x=4\)
Vậy x = 4.
\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)ĐKXĐ: \(x\ne-\frac{1}{5};x\ne-\frac{7}{5}\)
\(\Rightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)
\(\Leftrightarrow15x^2+13x+2=15x^2+16x-7\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
\(\frac{3x+2}{5x+7}\)= \(\frac{3x-1}{5x+1}ĐKXĐ:x#\)- \(\frac{1}{5};x#-\frac{1}{5};x#-\frac{7}{5}\)
< = > (\(\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)
< = > \(3x=9\)
\(x=3\)
số phải tìm :3
Ta có:\(\orbr{\begin{cases}2x-3y=3\\x+2y=2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-6y=6\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}7x=12\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\3x+6y=6\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\y=\frac{1}{7}\end{cases}}\)
Vậy tỉ lệ thức \(\frac{y}{x}=\frac{1}{12}\)
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
<=>(2x+3)(10x+2)=(5x+2)(4x+5)
<=>2x(10x+2)+3(10x+2)=5x(4x+5)+2(4x+5)
<=>20x2+4x+30x+6=20x2+25x+8x+10
<=>34x+6=33x+10 (bỏ mỗi vế 20x2)
<=>34x-33x=-6+10
<=>x=4
Vậy x=4