K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

hình như sai đề

12 tháng 7 2016

sai de rui

19 tháng 8 2016

Ta có : \(\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\)

Vậy \(x\in\left\{1;-2\right\}\)

Đây giống bài lớp 6 hơn

19 tháng 8 2016

(x-1)(x+2)=0

=>x-1=0 hoặc x+2=0

=>x=1 hoặc x=-2

2 tháng 1 2018

ta có \(2x^2+2xy+2y^2+2x-2y+2=0\)

 <=>\(x^2+2xy+y^2+x^2+2x+1+y^2-2y+1=0\)

  <=>\(\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

<=>\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

thay vào, ta có M=\(0^{30}+\left(-1+2\right)^{12}+\left(1-1\right)^{2017}=1\)

Vậy M=1 

^_^

28 tháng 6 2016

\(\left(x^2+x+1\right)\left(x^2+x-1\right)\)

\(=\left(x^2+x\right)^2-1\ge-1\)

28 tháng 6 2016

(x^2+x + 1) (x^2 +x-1)
=(x^2+x)^2-1 >= -1

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

1 tháng 3 2017

A = 2(x^2 - y^2).(x^4 + x^2y^2 + y^4) - 3x^4 - 3y^4 +1

A = 2x^4 + 2.x^2y^2 + 2y^4 - 3x^4 - 3y^4 +1

A = -x^4 + 2.x^2y^2 -y^4 +1

A = - (x^2 - y^2) +1

A = -1 + 1 =0

8 tháng 2 2020

Áp dụng bđt AM-GM ta có:

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge4\)

CMTT \(\left(y+\frac{1}{y}\right)^2\ge4\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge4\left(dpcm\right)\)

Dấu"="xảy ra \(\Leftrightarrow x=y=1\)