Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{7x+2}{5x+7}=\frac{7x-1}{5x+1}=\frac{\left(7x+2\right)-\left(7x-1\right)}{\left(5x+7\right)-\left(5x+1\right)}=\frac{3}{6}=\frac{1}{2}\)
=> 2(7x + 2) = 5x + 7
14x + 4 = 5x + 7
14x - 5x = 7 - 4
9x = 3
x = 3:9
x = 0,(3)
giá trị nhỏ nhất bằng 7 khi x=0
x4 lớn hơn bằng 0
2.x2 lớn hơn = 0
=> x4 +2.x2 -7 lơn hơn bằng -7 => giá trị nhỏ nhất = -7 khi x = 0
Lời giải:
$A=|x-2|+|y+3|=|2+y-2|+|y+3|=|y|+|y+3|$
$=|-y|+|y+3|\geq |-y+y+3|=3$
Vậy $A_{\min}=3$
Giá trị này đạt được khi $(-y)(y+3)\geq 0$
$\Leftrightarrow -3\leq y\leq 0$
Ta có
\(2x-3+2\left(y-4\right)\)
\(=2x-3+2y-8\)
\(=2x+2y-3-8\)
\(=2\left(x+y\right)-11\)
Với x+y=7, ta có:\(2\left(x+y\right)-11=2.7-11\)
\(=14-11=3\)
Vậy với x + y = 7 thì A = 3
(x-1)200+(y+2)300=0
(x-1)^200 > 0 ; (y+2)^300>0
=> (x-1)^200 = 0 và (y + 2)^300 = 0
=> x - 1 = 0 và y + 2 = 0
=> x = 1 và y = - 2
thay vào rồi tính như bình thường thôi
Vì \(\left(x-1\right)^{200}\ge0\forall x\); \(\left(y+2\right)^{300}\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)
mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:
\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)
\(=2+40+4=46\)