Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ap dụng tính chất tỉ lệ thức ta có
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Nên ta có
\(1+\frac{x}{y}=\left(1+\frac{y+z-x}{y}\right)=\frac{2z}{y}\)
\(1+\frac{y}{z}=1+\frac{y}{z}=\frac{2x}{z}\)
\(1+\frac{z}{x}=\frac{2y}{x}\)
Chỗ này mình làm hơi tắt nên tự hiệu nhé
\(\Rightarrow\frac{2z}{y}\cdot\frac{2y}{x}\cdot\frac{2x}{z}=\frac{8xyz}{xyz}=8\)
\(\frac{1}{x\left(x+1\right)}=\frac{\left(x+1\right)-x}{x\left(x+1\right)}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
=>\(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
=>\(\frac{1}{x}-\frac{1}{x+1}-\frac{1}{x}=\frac{1}{2011}\)
=>\(\frac{1}{x}-\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2011}\)
=>\(0-\frac{1}{x+1}=\frac{1}{2011}\)
=>\(-\frac{1}{x+1}=\frac{1}{2011}\)
=>-x+1=2011
=>-x=2011-1
=>-x=2010
=>x=-2010
Vậy x=-2010
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
<=>\(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
<=>\(-\frac{1}{x+1}=\frac{1}{2011}\)
<=>-x-1=2011
<=>x=-2012
Đáp số: \(x=-2012\)
Bài 1:
\(\frac{x}{-8}=\frac{-18}{x}\)
\(\Rightarrow x^2=144\)
\(\Rightarrow x=\pm12\)
Vậy \(x=\pm12\)
Bài 3:
Giải:
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\Rightarrow\frac{a}{2,1}=\frac{b}{2,7}\Rightarrow\frac{a}{21}=\frac{b}{27}\Rightarrow\frac{a}{7}=\frac{b}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{7}=\frac{b}{9}=\frac{5a}{35}=\frac{4b}{36}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)
+) \(\frac{a}{7}=1\Rightarrow a=7\)
+) \(\frac{b}{9}=1\Rightarrow b=9\)
\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=\left(-2\right)^2=4\)
Vậy \(\left(a-b\right)^2=4\)
Bài 4:
Giải:
Ta có: \(\frac{a}{b}=\frac{9,6}{12,8}\Rightarrow\frac{a}{9,6}=\frac{b}{12,8}\Rightarrow\frac{a}{96}=\frac{b}{128}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\)
\(\Rightarrow a=3k,b=4k\)
Mà \(a^2+b^2=25\)
\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=25\)
\(\Rightarrow9.k^2+16.k^2=25\)
\(\Rightarrow25k^2=25\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow a=3;b=4\)
+) \(k=-1\Rightarrow a=-3;b=-4\)
\(\Rightarrow\left|a+b\right|=\left|3+4\right|=\left|-3+-4\right|=7\)
Vậy \(\left|a+b\right|=7\)
Áp dụng BĐT
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)Ta có:
\(\left|2x-7\right|+\left|2x+1\right|=\left|2x-7\right|+\left|-2x-1\right|\ge\left|2x-7+\left(-2x-1\right)\right|=8\)
Mà \(\left|2x-7\right|+\left|2x+1\right|\ge\)8 nên không có số nguyên x nào thỏa mãn đề ra
Ta có:\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
\(\Leftrightarrow-\frac{1}{x+1}=\frac{1}{2011}\)\(\Leftrightarrow-x-1=2011\)
\(\Leftrightarrow x=-2012\)
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
=> \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}-\frac{-1}{2011}\)
=> \(\frac{1}{x+1}=\frac{-1}{2011}=\frac{1}{-2011}\)
=> x + 1 = -2011
=> x = -2011 - 1
=> x = -2012
Vậy x = -2012
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
ĐKXĐ: \(x\ne0,x\ne-1\)
Ngoài việc quy đồng có thể giải như sau:
Ta thấy: \(\frac{1}{x\left(x+1\right)}=\frac{\left(x+1\right)-x}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
Nên từ đề bài => \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
=>\(-\frac{1}{x+1}=\frac{1}{2011}\)=> \(-\left(x+1\right)=2011\)=>\(-x-1=2011\)=>\(x=-2012\)( thỏa mãn ĐKXĐ)
Kết luận.