\(|\dfrac{x}{2015}+\dfrac{x}{2016}|\)= \(|\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(\left|\dfrac{x}{2015}+\dfrac{x}{2016}\right|=\left|\dfrac{x}{2016}+\dfrac{x}{2017}\right|\)

\(\Rightarrow\left|x\right|.\left|\dfrac{1}{2015}+\dfrac{1}{2016}\right|=\left|x\right|.\left|\dfrac{1}{2016}+\dfrac{1}{2017}\right|\)

\(\Rightarrow\left|x\right|.\left(\dfrac{1}{2015}+\dfrac{1}{2016}\right)=\left|x\right|.\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)

Từ đó \(\Rightarrow\)

\(\left|x\right|.\left(\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left|x\right|.\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)=0\)

\(\Rightarrow\left|x\right|.\left[\left(\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)\right]=0\)

\(\Rightarrow\left|x\right|=0:\left[\left(\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)\right]\)

\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)

Vậy \(x=0\)

\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)

\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)

\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)

\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)

Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)

\(\Leftrightarrow\left(\dfrac{x+4}{2015}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+1}{2018}+1\right)\)

=>x+2019=0

=>x=-2019

16 tháng 7 2017

help mekhocroi

16 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có:

\(x=\dfrac{2016^{2017}+1}{2016^{2016}+1}< 1\)

\(\Rightarrow x< \dfrac{2016^{2017}+1+2015}{2016^{2016}+1+2015}\Rightarrow x< \dfrac{2016^{2017}+2016}{2016^{2016}+2016}\Rightarrow x< \dfrac{2016\left(2016^{2016}+1\right)}{2016\left(2016^{2015}+1\right)}\Rightarrow x< \dfrac{2016^{2016}+1}{2016^{2015}+1}=y\)

\(\Rightarrow x< y\)

1 tháng 11 2017

\(\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}=\dfrac{x}{3}+\dfrac{x}{5}+\dfrac{x}{2017}\)

\(\Rightarrow x.\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}\right)=x.\left(\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{2017}\right)\)

\(\dfrac{1}{2}>\dfrac{1}{3};\dfrac{1}{4}>\dfrac{1}{5};\dfrac{1}{2016}>\dfrac{1}{2017}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}>\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{2017}\)

\(\Rightarrow x=0\)

Vậy ................

14 tháng 6 2017

a)\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

b)\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(1+\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}=1+\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}\)

\(\Rightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)

Giải tương tự câu a ta được \(x=-2018\)

14 tháng 6 2017

a) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow6006\left(x+1\right)+5460\left(x+1\right)+5005\left(x+1\right)=4620\left(x+1\right)+4290\left(x+1\right)\)

\(\Leftrightarrow\left(6006+5460+5005\right)\cdot\left(x+1\right)=\left(4620+4290\right)\cdot\left(x+1\right)\)

\(\Leftrightarrow16471\left(x+1\right)=8910\left(x+1\right)\)

\(\Leftrightarrow16471x+16471=8910x+8910\)

\(\Leftrightarrow16471x-8910x=8910-16471\)

\(\Leftrightarrow7561x=-7561\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

b) \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(\Rightarrow4096749040\left(x+4\right)+4094735904\left(x+3\right)=4092704785\left(x+2\right)+4090675680\left(x+1\right)\)

\(\Leftrightarrow4096769040x+16387076160+4094735904x+12284207712=4092704785x+8185409570+4090675680x+4090675680\)

\(\Leftrightarrow8191504944x+28671283872=8183380465x+12276085250\)

\(\Leftrightarrow8191504944x-8183380465x=12276085250-28671283872\)

\(\Leftrightarrow8124479x=-16395198622\)

\(\Rightarrow x=-2018\)

Vậy \(x=-2017\)

P/s: đây không phải cách làm tối ưu, vì vậy mình nghĩ bạn nên tham khảo từ các bài làm khác nhé!

18 tháng 10 2017

\(\dfrac{x-2}{2018}=\dfrac{x-3}{2017}=\dfrac{x-4}{2016}=\dfrac{x-5}{2015}\)

\(\dfrac{x-2}{2018}+\dfrac{x-3}{2017}=\dfrac{x-4}{2016}+\dfrac{x-5}{2015}\)

\(\left(\dfrac{x-2}{2018}-1\right)+\left(\dfrac{x-3}{2017}-1\right)=\left(\dfrac{x-4}{2016}-1\right)+\left(\dfrac{x-5}{2015}-1\right)\)

\(\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}=\dfrac{x-2020}{2016}+\dfrac{x-2020}{2015}\)

\(\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}-\dfrac{x-2020}{2016}-\dfrac{x-2020}{2015}=0\)

\(\left(x-2020\right)\left(\dfrac{1}{2018}+\dfrac{1}{2017}-\dfrac{1}{2016}-\dfrac{1}{2015}\right)=0\)

\(\dfrac{1}{2018};\dfrac{1}{2017};\dfrac{1}{2016};\dfrac{1}{2015}>0\)

Nên \(x-2020=0\)

\(x=0+2020\)

\(x=2020\)

Vậy x bằng 2020

21 tháng 10 2017

Tui đánh giá cao câu trả lời này của bạn :v

21 tháng 4 2018

\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)

\(\Rightarrow\dfrac{x-1}{2017}+\dfrac{x-2}{2016}-\dfrac{x-3}{2015}-\dfrac{x-4}{2014}=0\)

\(\Rightarrow\dfrac{x-1}{2017}-1+\dfrac{x-2}{2016}-1-\dfrac{x-3}{2015}+1-\dfrac{x-4}{2014}+1=0\)

\(\Rightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)-\left(\dfrac{x-3}{2015}-1\right)-\left(\dfrac{x-4}{2014}-1\right)=0\)

\(\Rightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)

\(\Rightarrow x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)

Để \(x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\Rightarrow x-2018=0\)

\(x=2018\)

21 tháng 4 2018

Ta có :

\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)

\(\Leftrightarrow\)\(\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\) ( trừ 2 vế cho 2 )

\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}=\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}\)

\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)

\(\Leftrightarrow\)\(\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)

Nên \(x-2018=0\)

\(\Rightarrow\)\(x=2018\)

Vậy \(x=2018\)

Chúc bạn học tốt ~

13 tháng 12 2018

\(\dfrac{x+4}{2015}+\dfrac{x+3}{2016}=\dfrac{x+2}{2017}+\dfrac{x+1}{2018}\)

\(\Leftrightarrow\left(\dfrac{x+4}{2015}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+1}{2018}+1\right)\)

\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}=\dfrac{x+2019}{2017}+\dfrac{x+2019}{2018}\)

\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}-\dfrac{x+2019}{2017}-\dfrac{x+2019}{2018}=0\)

\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)

\(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)

\(\Leftrightarrow x+2019=0\)

\(\Leftrightarrow x=-2019\)

Vậy...