Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giá trị x =1 là nghiệm của bấc phương trình
A.3x+3>9
B. -5x>4x+1
C.x-2x<2x+4
D.x-6>5-x
\(P^2=\left(-2x+y\right)^2=\left(\frac{-1}{3}.6x+\frac{1}{4}.4y\right)^2\)
\(\Rightarrow P^2\le\left[\left(-\frac{1}{3}\right)^2+\left(\frac{1}{4}\right)^2\right]\left[\left(6x\right)^2+\left(3y\right)^2\right]=\frac{13}{36}.\left(36x^2+16y^2\right)=\frac{13}{4}\)
\(\Rightarrow\frac{-\sqrt{13}}{2}\le P\le\frac{\sqrt{13}}{2}\)
Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Rightarrow P\ge\frac{1}{2}\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2=\frac{1}{2}\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2\)
\(\Rightarrow P\ge\frac{1}{2}\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2=18\)
\(\Rightarrow P_{min}=18\) khi \(x=y=\frac{1}{2}\)
\(2x+6>x+1\)
\(\Leftrightarrow x>-5\)
2x + 6 > x + 1
<=> 2x - x > 1 - 6
<=> x > -5
Vậy giá trị x > -5 thỏa mãn bất phương trình trên.
Chúc bn hok tốt nha!