K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 7 2024

Lời giải:
$9x^2-48x+65=(3x)^2-2.3x.8+8^2+1=(3x-8)^2+1\geq 0+1=1$

Vậy $9x^2-48x+65$ nhận giá trị nhỏ nhất bằng $1$.

Giá trị này đạt tại $3x-8=0\Leftrightarrow x=\frac{8}{3}$

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

17 tháng 10 2018

(*)\(-17-\left(x-3\right)^2\)

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow GTLN\) của biểu thức sẽ là \(-17-0=-17\)

(*)\(2.3^x+3^{x+2}=99.3^{12}\)

\(\Leftrightarrow3^x\left(2+9\right)=99.3^{12}\)

\(\Leftrightarrow3^x=\dfrac{99.3^{12}}{11}=9.3^{12}=3^{14}\)

(*)Giá trị của biểu thức tại a=5 là:

\(\left(5.5+7\right)\left(9-2.5\right)+23=32.\left(-1\right)+23=-9\)

(*)\(B=3-x^2+2x\)

\(B=-x^2-x+3x+3\)

\(B=-x\left(x+1\right)+3\left(x+1\right)\)

\(B=\left(3-x\right)\left(x+1\right)\)

\(\Rightarrow\)Để \(B\) có được \(GTLN\) thì \(3-x\ge0\); \(x+1\ge0\)

\(\Rightarrow x\in\left\{-1;0;1;2;3\right\}\)

Thay vào tính, ta có được \(x=1\) thì sẽ được \(B\)\(GTLN\)

15 tháng 9 2016

 - |x-3|=12

<=> - |x-3|-12=0

|x-3|>=0

- |x-3|<=0

=>- |x-3|-12<=-12

dấu "=" xảy ra khi x=3

ý 2 làm tương tự

23 tháng 12 2020

a) \(P=-\left|x-3\right|=12\)

\(P=-\left|x-3\right|-12=0\)

Vì: \(-\left|x-3\right|\le0\forall x\)

\(\Rightarrow-\left|x-3\right|-12\le-12\forall x\)

\(\Leftrightarrow P_{max}=-12\Leftrightarrow-\left|x-3\right|=0\Leftrightarrow x=3\)

b) \(A=\left|x+13\right|+64\)

Vì: \(\left|x+13\right|\ge0\forall x\)

\(\Rightarrow\left|x+13\right|+64\ge64\forall x\)

\(\Leftrightarrow A_{min}=64\Leftrightarrow\left|x+13\right|=0\Leftrightarrow x=-13\)