K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mọi người giải giúp mk với ạ Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1. Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1 Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10 Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10. Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, . Câu 318. Cho...
Đọc tiếp

Mọi người giải giúp mk với ạ

Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1.

Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1

Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10

Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10.

Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, .

Câu 318. Cho dãy số có giới hạn (un) xác định bởi : -,n 21 2-u C. -1. D. B. 1. A. 0. 1 1 1 [2

Câu 319. Tìm giá trị đúng của S = 2| 1+-+ 2 48 2" C. 2 2. D. B. 2. A. 2 +1. 4" +2"+1 bằng :

Câu 320. Lim4 3" + 4"+2 1 B. D. +oo. A. 0. In+1-4

Câu 321. Tính giới hạn: lim Vn+1+n C.-1. D. B.O. A. 1. +(2n +1)- * 3n +4 1+3+5+...+ 3n 14,

Câu 322. Tính giới hạn: lim C. 2 3 B. D. 1. A. 0. 1 nlat1) +......+

Câu 323. Tính giới hạn: lim n(n+1) 1.2 2.3 3 C. 21 D. Không có giới hạn. B. 1. A. 0.

0
1) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np (p là một số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng: A. n p B. n > p C. n=p D. n=1 2) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là...
Đọc tiếp

1) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np (p là một

số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng:

A. n p B. n > p

C. n=p D. n=1

2) Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np ( p là một

số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

A. k > p B. k p

C. k = p D. k < p

3) Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên np (p là một số tự nhiên), ta tiến hành hai bước:

Bước 1, kiểm tra mệnh đề A(n) đúng với n=p

Bước 2, giả thiết mệnh đề A(n) đúng với số tự nhiên bất kỳ n=kp và phải chứng minh rằng

nó cũng đúng với n=k+1

Trong hai bước trên:

A. Chỉ có bước 1 đúng. B. Chỉ có bước 2 đúng.

C. Cả hai bước đều đúng. D. Cả hai bước đều sai.

4) Cho dãy số( un )là dãy số tăng. Trong các mệnh đề sau, mệnh đề nào đúng?

A. Mệnh đề un+1>un,nℕ* C.Mệnh đề un+1<un,nℕ*

B. Mệnh đề un+1un,nℕ* D. Mệnh đềun+1un,nℕ*

5) Cho dãy số (un) là dãy số bị chặn. Trong các mệnh đề sau, mệnh đề nào đúng?

A. Mệnh đề m<un< M, nℕ* B. Mệnh đề mun M, nℕ*

C. Mệnh đề un M, nℕ* D. Mệnh đề un M, nℕ*

6) Cho dãy số (un) là dãy số bị chặn dưới bởi số m. Trong các mệnh đề sau, mệnh đề nào đúng?

A. Mệnh đề un m, nℕ* B. Mệnh đề un m, nℕ*

C. Mệnh đề un> m, nℕ* D. Mệnh đề un< m, nℕ*

7) Công thức nào sau đây là đúng với cấp số cộng có số hạng đầu u1, công sai d?

A. un = un + d B. un = u1+ (n+1)d

C. un = u1 – (n–1)d D. un = u1 + (n–1)d

8) Cho dãy số (un), biết un=3n. Số hạng un+1 bằng:

A. Bằng 3n.3 B. Bằng3n+3

C. Bằng 3n+1 D. Bằng 3(n+1)

9) Cho dãy số( nn) biết un=1n+1. Khi đó u10bằng:

A. Bằng111 B. Bằng 11

C. Bằng 110 D. Bằng 10

10) Cho cấp số nhân -4,x,-9 . Hãy chọn kết quả đùng trong các kết quả sau:

A. x=-36 B. x=6

C. x=36 D. x=-6,5

11) Cho dãy số (un )biết un =3n2+1 . Trong các mệnh đề sau, mệnh đề nào đúng?

A. un bị chặn dưới.

B. unbị chặn trên.

C. un bị chặn

D. un không bị chặn.

12) Cho cấp số cộngu1=-3, u6=27 . Công sai của cấp số cộng đó là:

A. 5 B. 6

C. 7 D. 8

13) Cho cấp số cộng u1=3, u8=24 . Công sai của cấp số cộng đó là:

A. 3 B. 4

C. -3 D. 5

14) Cho cấp số cộng u1=-0,1,d=0,1 . Số hạng thứ 7 của cấp số cộng đó là:

A. 1,6 B. 0,5

C. 6 D. 0,6

15) Viết 5 số xen giữa hai số 25 và 1 để được CSC có bảy số hạng

A. 21; 17; 13; 9; 5 B. 21; -17; 13; -9; 5

C. -21; 17; -13; 9; 5 D. 21; 16; 13; 9; 5

16) Xác định x để 3 số : 1–x;x2; 1+x lập thành một cấp số cộng?

A. Không có giá trị nào của x B. x = ±2

C. x = ±1 D. x = 0

17) Cho dãy số 12;b;2. Chọn b để dãy số đã cho lập thành cấp số nhân?

A. b = –1 B. b = 1

C. b = 2 D. Không có giá trị nào của b

18) Cho cấp số nhân:-15;a;-1125. Giá trị của a là:

A. a=15 B. a=125

C. a=15 D. a=5

19) Cho dãy số: –1; x; 0,64. Chọn x để dãy số đã cho lập thành cấp số nhân?

A. Không có giá trị nào của x B. x = –0,008

C. x = 0,008 D. x = 0,004

20) Cho dãy số(un )biết un=nn+1. Trong các mệnh đề sau, mệnh đề nào đúng?

A. un bị chặn dưới. B. un bị chặn trên.

C. un bị chặn. D. un không bị chặn.

21) Cho Sn=112+123+134+......+1n.(n+1) với nℕ* Mệnh đề nào sau đây đúng?

A. Mệnh đề S3= 14 B. Mệnh đề S2=23

C. Mệnh đề S2=16 D. Mệnh đề S3=112

22) Cho dãy số(un )biết un=1+n2n+1. Số 815 là số hạng thứ bao nhiêu?

A. 8 B. 6

C. 5 D. 7

23) Cho dãy số: –1; 1; –1; 1; –1; … Khẳng định nào sau đây là đúng?

A. Dãy số này không phải là cấp số nhân B. Số hạng tổng quát un =1n =1

C. Dãy số này là cấp số nhân có u1 = –1, q = –1 D. Số hạng tổng quát un= (-1)2n .

24) Cho cấp số nhân (un )với u1=-12, u7 = –32. Tìm q ?

A. q=12 B. q=2

C. q =4 D. q=1

25) Cho cấp số nhân (un )với u1 = 3, q = –2. Số 192 là số hạng thứ mấy của (un )?

A. Số hạng thứ 5 B. Số hạng thứ 6

C. Số hạng thứ 7 D. Không là số hạng của cấp số đã cho.

26) Cho cấp số nhân có u2=14,u5=6 . Tìm q vàu1 .

A. q=12 ;u1=12 B. q =-12 ;u1=-12

C. q =4 ;u1=116 D. q =-4 ;u1=-116

27) Cho cấp số cộng: –2 ; –5 ; –8 ; –11 ; –14 ; … Tìm d và tổng của 20 số hạng đầu tiên?

A. d = 3; S20 = 510 B. d = –3; S20= –610

C. d = –3; S20 = 610 D. d = 3; S20 = 610

28) Cho dãy số (un )với un =7-2n. Khẳng định nào sau đây là sai?

A. 3 số hạng đầu của dãy: u1=5; u2=3; u3=1

B. Số hạng thứ n + 1=un+1=8-2n

C. Là cấp số cộng có d = – 2

D. Số hạng thứ 4: u4=-1

29) Cho dãy số (un ) có un=1n+2. Khẳng định nào sau đây sai?

A. là cấp số cộng có u1=12;un =1n+2

B. là một dãy số giảm dần

C. là một cấp số cộng

D. bị chặn trên bởi M = 12

30) Cho (un) có :u1=-0,1;d=1 . Khẳng định nào sau đây là đúng?

A. Số hạng thứ 7 của cấp số cộng này là: 0,6

B. Cấp số cộng này không có hai số 0,5 và 0,6

C. Số hạng thứ 6 của cấp số cộng này là: 0,5

D. Số hạng thứ 4 của cấp số cộng này là: 3,9

0
NV
25 tháng 2 2020

\(I\left(1;1\right)\) , bán kính \(R=2\)

Do \(sin\widehat{AIB}\le1\Rightarrow S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}\le\frac{1}{2}IA.IB=\frac{1}{2}R^2=2\)

\(\Rightarrow S_{max}=2\) khi \(\widehat{AIB}=90^0\)

Gọi H là hình chiếu của I lên AB, áp dụng hệ thức lượng cho tam giác vuông AIB:

\(\frac{1}{IH^2}=\frac{1}{IA^2}+\frac{1}{IB^2}=\frac{2}{R^2}\Rightarrow IH=\frac{R}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow d\left(I;AB\right)=\sqrt{2}=\frac{\left|1+1-m\right|}{\sqrt{1^2+1^2}}\Rightarrow\left|2-m\right|=2\Rightarrow\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\)

NV
19 tháng 10 2019

\(cosx=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

Có 2 điểm biểu diễn trên đường tròn lượng giác

Bài 1: 1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0 2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr: 1,góc BAQ=góc CAP 2,Điểm Q di chyển trên 1 đường thẳng cố...
Đọc tiếp

Bài 1:

1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0

2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn

Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr:

1,góc BAQ=góc CAP

2,Điểm Q di chyển trên 1 đường thẳng cố định

Bai 3:Tìm tất cả các căp số thực(a:b) có tính chất:Trong (0xy),parabol y=x2-2bx +(a+1) cắt 0x tại 2 điểm phân biệt A,B cắt 0y tại C(C#0) sao cho I(a,b) là tâm đường tròn ngoại tiếp tam giác ABC

Bài 4:

1,cho x,y>0 tm:log3(1-xy)/(x+2y) = 3xy +x +2y -4.tìn gtnn của Q=x+y

2,cho h/s f(x)=ln2019 – ln( (x+1)/x).tính S=f’(1) +f’(2) +f’(3) +…+f’(2019)

Bai 5:cho(xn): x1=2/3

Xn+1=xn/(2(2n+1)xn +1), mọi n>=1

1,đặt Vn=1/xn. cmr Vn+1=Vn+2(2n+1),mọi n>=1.tìm Vn

2,đặt Yn=x1+x2+x3+….+xn.Tính Lim yn

Bài 6: cho tam giác ABC vuông cân tại B.M là trung điểm AB.gọi I là điểm di chuyển trên đường thẳng MC sao cho|2 vecto IM+ vecto IC- vecto IA| đạt gtnn.Tính tỉ số AC/AI

0
NV
1 tháng 4 2020

a/ Đề không rõ ràng bạn

Từ câu b trở đi, dễ dàng nhận ra tất cả các hàm số đều liên tục trên R

b/ Xét \(f\left(x\right)=x^3+3x^2-1\)

Ta có: \(f\left(-3\right)=-1\) ; \(f\left(-2\right)=3\)

\(\Rightarrow f\left(-3\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-3;-2\right)\)

\(f\left(0\right)=-1\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;0\right)\)

\(f\left(1\right)=3\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(0;1\right)\)

\(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm phân biệt

NV
1 tháng 4 2020

c/\(f\left(x\right)=m\left(x-1\right)^3\left(m^2-4\right)+x^4-3\)

\(f\left(-2\right)=13\) ; \(f\left(1\right)=-2\)

\(\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;1\right)\)

\(f\left(2\right)=13\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(1;2\right)\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm

d/ \(f\left(x\right)=5sin3x+x-10\)

\(f\left(0\right)=-10\)

\(f\left(4\pi\right)=4\pi-10\)

\(\Rightarrow f\left(0\right).f\left(4\pi\right)=-10\left(4\pi-10\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;4\pi\right)\) hay \(f\left(x\right)\) luôn có nghiệm

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là : A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0 Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là : A. 1 B. 0 C. 3 D. \(+\infty\) Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2...
Đọc tiếp

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là :

A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0

Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là :

A. 1 B. 0 C. 3 D. \(+\infty\)

Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2 + b2 + c2

A. S = 26 B. S = 30 C. S = 21 D. S = 31

Câu 4 : Cho un = \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\) thì lim \(\left(u_n-\frac{1}{2}\right)\) bằng

A. 0 B. -1 C. 1 D. \(\frac{1}{2}\)

Câu 5 : Tìm giá trị thực của tham số m để hàm số y = f (x ) = \(\left\{{}\begin{matrix}\frac{x^2-x-2}{x-2}khix\ne2\\mkhix=2\end{matrix}\right.\) liên tục tại x = 2

A. m = 3 B. m = 1 C. m = 2 D. m = 0

Câu 6 : Cho hàm số f(x) = \(\left\{{}\begin{matrix}\frac{x^2+4x+3}{x+3},khix>-3\\2a,khix\le-3\end{matrix}\right.\) . giá trị của để f ( x ) liên tục tại x0 = -3 là

A. 1 .B. 2 C. -1 D. -2

Câu 7 : Hàm số y = f (x) = \(\frac{x^3+xcosx+sinx}{2sinx+3}\) liên tục trên

A. [-1;1] B. [1;5] C. \(\left(-\frac{3}{2};+\infty\right)\) D. R

Câu 8 : Kết quả của giới hạn \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) là :

A. \(+\infty\) B. \(-\infty\) C. 0 D. \(\frac{5}{6}\)

Câu 9 : Với a là số thực khác 0 , \(lim_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^2-a^2}\) bằng :

A. a - 1 B. a + 1 C. \(\frac{a-1}{2a}\) D. \(\frac{a+1}{2a}\)

Câu 10 : giá trị của \(lim_{x\rightarrow+\infty}\frac{\sqrt{2+2x}-\sqrt{2x^2+2}}{2x}\) bằng

A. \(-\infty\) B. \(\sqrt{2}-\sqrt{3}\) C. \(+\infty\) D. \(-\sqrt{3}\)

Câu 11 : Kết quả của giới hạn \(lim_{x\rightarrow1^+}\frac{-2x+1}{x-1}\)là :

A. \(\frac{2}{3}\) B. \(-\infty\) C. \(\frac{1}{3}\) D. \(+\infty\)

Câu 12 : Đạo hàm của hàm số y = cot x là hàm số :

A. \(\frac{1}{sin^2x}\) B. \(-\frac{1}{sin^2x}\) C. \(\frac{1}{cos^2x}\) D. \(-\frac{1}{cos^2x}\)

Câu 13 : Đạo hàm của hàm số y = \(\left(x^3-2x^2\right)^{2020}\) là :

A. y' = \(2020\left(x^3-2x^2\right)^{2021}\)

B. y' = \(2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

C. y' = \(2019\left(x^3-2x^2\right)^{2020}\left(3x^2-4x\right)\)

D. y' = \(2019\left(x^3-2x^2\right)\left(3x^2-2x\right)\)

Câu 14 : Đạo hàm của hàm số y = \(\sqrt{4x^2+3x+1}\) là hàm số nào sau đây ?

A. y = \(\frac{1}{2\sqrt{4x^2+3x+1}}\)

B. y = \(\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

C. y = 12x + 3

D. y = \(\frac{8x+3}{\sqrt{4x^2+3x+1}}\)

Câu 15 : Tính đạo hàm của hàm số y = (x - 5)4

A. y' = ( x - 5 )3 B. y' = -20 (x-5)3 C. y' = -5(x-5)3 D. y' = 4(x-5)3

Câu 16 : Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

A. \(y^'=-\frac{sin2x}{2\sqrt{cos2x}}\)

B. y' = \(\frac{sin2x}{\sqrt{cos2x}}\)

C. y' = \(\frac{sin2x}{2\sqrt{cos2x}}\)

D. y' = \(-\frac{sin2x}{\sqrt{cos2x}}\)

Câu 17 : Đạo hàm của hàm số y = \(x^4+\frac{1}{x}-\sqrt{x}\) là :

A. y' = \(4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

B. y' = \(4x^3+\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

C. y' = \(4x^3+\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

D. y' = \(4x^3-\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

Câu 18 : Tiếp tuyến với đồ thị y = x3 - x2 tại điểm có hoành độ x0 = -2 có phương trình là :

A. y = 20x + 14 B. y = 20x + 24 C. y = 16x + 20 D. y = 16x - 56

Câu 19 : Tính đạo hàm cấp hai của hàm số y = \(\frac{1}{x}\)

A. y'' = \(-\frac{2}{x^3}\)

B. y'' = \(-\frac{1}{x^2}\)

C. y'' = \(\frac{1}{x^2}\)

D. y'' = \(\frac{2}{x^3}\)

Câu 20 : Hàm số y = cot x có đạo hàm là :

A. \(y^'=-\frac{1}{sin^2x}\)

B. y' = - tan x

C. y' = \(-\frac{1}{cos^2x}\)

D. y' = 1 + cot2x

Câu 21 : Hàm số y = \(x-\frac{4}{x}\) có đạo hàm bằng

A. \(\frac{-x^2+4}{x^2}\)

B. \(\frac{x^2+4}{x^2}\)

C. \(\frac{-x^2-4}{x^2}\)

D. \(\frac{x^2-4}{x^2}\)

Câu 22 : Trong các dãy số (un) sau , dãy số nào có giới hạn bằng \(+\infty\) ?

A. \(u_n=\frac{1}{n}\)

B. \(u_n=\left(\frac{2}{3}\right)^n\)

C. \(u_n=\left(-\frac{1}{2}\right)^n\)

D. \(u_n=3^n\)

5
NV
10 tháng 6 2020

16.

\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)

17.

\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

18.

\(y'=3x^2-2x\)

\(y'\left(-2\right)=16;y\left(-2\right)=-12\)

Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)

19.

\(y'=-\frac{1}{x^2}=-x^{-2}\)

\(y''=2x^{-3}=\frac{2}{x^3}\)

20.

\(\left(cotx\right)'=-\frac{1}{sin^2x}\)

21.

\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)

22.

\(lim\left(3^n\right)=+\infty\)

NV
10 tháng 6 2020

11.

\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)

12.

\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)

13.

\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

14.

\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

15.

\(y'=4\left(x-5\right)^3\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\(\lim \frac{{n + 3}}{{{n^2}}} = \lim \frac{{{n^2}\left( {\frac{1}{n} + \frac{3}{{{n^2}}}} \right)}}{{{n^2}}} = \lim \left( {\frac{1}{n} + \frac{3}{{{n^2}}}} \right) = 0\)

Chọn B.