Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
\(\Leftrightarrow x+66=0\)
\(\Leftrightarrow x=-66\)
b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)
Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)
\(7.\) Xét mẫu thức \(\left(x^2+1\right)\left(x^2+4x+5\right)\), ta có:
\(x^2\ge0\Rightarrow x^2+1\ge1>0\Rightarrow\) Luôn đúng với mọi giá trị \(x\)
\(x^2+4x+5\\ hayx^2+4x+4+1=\left(x+2\right)^2+1\\ \left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\)
\(\Rightarrow\) Luôn đúng với mọi giá trị \(x\)
Vậy biểu thức \(\frac{x^2-4}{\left(x^2+1\right)\left(x^2+4x+5\right)}+\frac{3}{2}x\) luôn xác định với mọi giá trị \(x\)
Thay x = 4 vào phương trình, ta được :
\(1-m=2\left(2m+1\right)\left(m-1\right)\)
\(\Leftrightarrow2\left(2m+1\right)\left(m-1\right)+\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+2+1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-1=0\\4m+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{-3}{4}\end{cases}}\)
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow\frac{m^2\left(x^2+4x+4-x^2+4x-4\right)}{8}-4x=\)\(m^2-2m+1+6m+3\)
\(\Leftrightarrow\frac{m^2.8x}{8}-4x=m^2+4m+4\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow x\left(m^2-4\right)=\left(m+2\right)^2\) \(\left(1\right)\)
+) Nếu \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
Phương trình có nghiệm duy nhất \(x=\frac{\left(m+2\right)^2}{m^2-4}=\frac{\left(m+2\right)^2}{\left(m+2\right)\left(m-2\right)}=\frac{m+2}{m-2}\)
+) Nếu \(m=2\)
\(\left(1\right)\Leftrightarrow x\left(2^2-4\right)=\left(2+2\right)^2\)
\(\Leftrightarrow0=16\) ( vô lí )
\(\Rightarrow\)Phương trình trên vô nghiệm
+) Nếu \(m=-2\)
\(\left(1\right)\Leftrightarrow x\left[\left(-2\right)^2-4\right]=\left(-2+2\right)^2\)
\(\Leftrightarrow0=0\)( đúng )
\(\Rightarrow\)Phương trình có nghiệm đúng với mọi x
Vậy : - Nếu \(m\ne\pm2\)phương trình có nghiệm duy nhất \(x=\frac{m+2}{m-2}\)
- Nếu m = 2 thì phương trình vô nghiệm
- Nếu m = -2 thì phương trình có nghiệm đúng với mọi x
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
khai triển hằng đẳng thức và rút gọn đưa về phương trình sau:
\(x\left(3m^2-8m+4\right)=6m+3\)
để pt vô nghiệm thì: \(\hept{\begin{cases}3m^2-8m+4=0\\6m+3\ne0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}3m^2-8m+4=0\\6m+3\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne-\frac{1}{2}\\\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}}\)\(\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\)
Đáp án A