Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a. \(\sqrt{\dfrac{25}{7}}.\sqrt{\dfrac{7}{9}}=\sqrt{\dfrac{25.7}{7.9}}=\sqrt{\dfrac{25}{9}}=\dfrac{5}{3}\)
b. \(\left(\sqrt{\dfrac{9}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{2}\right).\sqrt{2}=3+1-2=2\)
c. \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right).\sqrt{6}=4-12+10=2\)
d. \(\left(\sqrt{\dfrac{2}{3}}-\sqrt{\dfrac{3}{2}}\right)^2=\dfrac{2}{3}+\dfrac{3}{2}-2\sqrt{\dfrac{2}{3}.\dfrac{3}{2}}=\dfrac{1}{6}\)
2)
a. \(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
b. \(\sqrt{8-2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)
c. \(1+\sqrt{6-2\sqrt{5}}=1+\sqrt{5-2\sqrt{5}+1}=1-\sqrt{\left(\sqrt{5}-1\right)^2}=1-\sqrt{5}+1=2-\sqrt{5}\)
d. \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}+\sqrt{2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{2}=\sqrt{5}-\sqrt{2}+\sqrt{2}=\sqrt{5}\)
3. \(a.A=x^2+2x+16=\left(\sqrt{2}-1\right)^2+2.\left(\sqrt{2}-1\right)+16=2-2\sqrt{2}+1+2\sqrt{2}-2+16=17\)
\(b.B=x^2+12x-14=\left(5\sqrt{2}-6\right)^2+12.\left(5\sqrt{2}-6\right)-14=50+36-60\sqrt{2}+60\sqrt{2}-72-14=0\)
Help me nha @Phùng Khánh Linh@Nhã Doanh@Liana@Yukru Cảm ơn trước nhé
Bài 1 bạn nhóm , trục như thường nhé :D
Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)
\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)
\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)
\(D=-\sqrt{6}\left(do:D< 0\right)\)
1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)
3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)
\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)
\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)
\(1.A=\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{\dfrac{1}{3}.144}-2\sqrt{\dfrac{1}{3}.225}-\sqrt{\dfrac{1}{3}.9}+5\sqrt{\dfrac{4}{3}}=6\sqrt{\dfrac{1}{3}}-30\sqrt{\dfrac{1}{3}}-3\sqrt{\dfrac{1}{3}}+10\sqrt{\dfrac{1}{3}}=-17\sqrt{\dfrac{1}{3}}\) \(2.B=\left(2\sqrt{27}-3\sqrt{48}+3\sqrt{75}-\sqrt{192}\right)\left(1-\sqrt{3}\right)=\left(6\sqrt{3}-12\sqrt{3}+15\sqrt{3}-8\sqrt{3}\right)\left(1-\sqrt{3}\right)=\sqrt{3}\left(1-\sqrt{3}\right)=\sqrt{3}-3\) \(3.C=\left(2\sqrt{7}-2\sqrt{6}\right).\sqrt{6}-\sqrt{168}=2\sqrt{42}-12-2\sqrt{42}=-12\) \(4.D=\left(\sqrt{28}-2\sqrt{8}+\sqrt{7}\right).\sqrt{7}+4\sqrt{14}=\left(3\sqrt{7}-4\sqrt{2}\right)\sqrt{7}=21-4\sqrt{14}+4\sqrt{14}=21\)
a/ \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}=7-4\sqrt{3}+7+4\sqrt{3}=14\)
a) \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}=\dfrac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\dfrac{14}{49-48}=\dfrac{14}{1}=14\)
b) \(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}+2}-\dfrac{12}{3-\sqrt{6}}=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}+2}\right)-\dfrac{12}{3-\sqrt{6}}\)
\(=\left(\dfrac{15\left(\sqrt{6}+2\right)+4\left(\sqrt{6}+1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}+2\right)}\right)-\dfrac{12}{3-\sqrt{6}}=\dfrac{15\sqrt{6}+30+4\sqrt{6}+4}{6+2\sqrt{6}+\sqrt{6}+2}-\dfrac{12}{3-\sqrt{6}}\) \(=\dfrac{34+19\sqrt{6}}{8+3\sqrt{6}}-\dfrac{12}{3-\sqrt{6}}=\dfrac{\left(34+19\sqrt{6}\right)\left(3-\sqrt{6}\right)-12\left(8+3\sqrt{6}\right)}{\left(8+3\sqrt{6}\right)\left(3-\sqrt{6}\right)}\)
\(=\dfrac{102-34\sqrt{6}+57\sqrt{6}-114-96-36\sqrt{6}}{24-8\sqrt{6}+9\sqrt{6}-18}=\dfrac{-108-13\sqrt{6}}{6+\sqrt{6}}\)
c) \(\sqrt{2+\sqrt{3}}+\sqrt{2+\sqrt{3}}=2\sqrt{2+\sqrt{3}}=\sqrt{2}.\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)
câu này mk cảm thấy đề sai thì phải ; mà nếu o phải đề sai thì lời giải đó nha
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
1. với a=2,5 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|2.5\right|=2.5\)
với a=0,3 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|0,3\right|=0,3\)
với a=-0,1 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|-0,1\right|=0,1\)
Bài 4:
a: \(=\sqrt{\dfrac{10.8}{0.3}}=\sqrt{36}=6\)
b: \(=\sqrt{\dfrac{7}{175}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)
c: \(=\sqrt{\dfrac{2.84}{0.71}}=2\)
d: \(=\sqrt{\dfrac{625}{144}}=\dfrac{25}{12}\)
\(\dfrac{6}{\sqrt{7}-1}\)=\(\dfrac{6\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}\)=\(\dfrac{6\left(\sqrt{7}+1\right)}{6}=\sqrt{7}+1\)
vậy đáp án (D) đúng.
\(\dfrac{6}{\sqrt{7}-1}=\dfrac{6\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}=\dfrac{6\left(\sqrt{7}+1\right)}{6}=\sqrt{7}+1\)
\(Vậy\) \(đáp\) \(án\) \(đúng\) \(là\) \(D.\)