Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,50\%+\dfrac{7}{12}-\dfrac{1}{2}\\ =\dfrac{1}{2}+\dfrac{7}{12}-\dfrac{1}{2}\\ =\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\dfrac{7}{12}\\ =\dfrac{7}{12}\\ b,2022\times67+2022\times43-2022\times10\\ =2022\times\left(67+43-10\right)\\ =2022\times100\\ =202200.\\ c,125-25:3\times12\)
\(=25\times5-25:3\times12\\ =25\times\left(5-\dfrac{1}{3}\right)\times12\\ =25\times\dfrac{14}{3}\times12\\ =1400\)
a,50%+127−21=21+127−21=(21−21)+127=127b,2022×67+2022×43−2022×10=2022×(67+43−10)=2022×100=202200.c,125−25:3×12
a. \(\dfrac{2021+2020.2022}{2021.2022-1}\)
\(\dfrac{2021.2022-2022+2021}{2021.2022-1}=\dfrac{2021.2022-1}{2021.2022-1}=1\)
\(b.\dfrac{2022+2021.2023}{2022.2023-1}=\dfrac{2021.2023-2023+2022}{2022.2023-1}\)
\(=\dfrac{2021.2023-1}{2022.2023-1}\)
a/Thay a = 1; b = 0 vào biểu thức C, ta có:
\(C=\left(2022\times1+2022\times0\right)-2021\times0\)
\(=\left(2022+0\right)-0\)
\(=2022\)
b/Thay a = 1; b = 0 vào biểu thức D, ta có:
\(D=\left(999\times1-99\times0\right)+201\times\left(1-0\right)\)
\(=\left(999-0\right)+201\times1\)
\(=999+201\)
\(=1200\)
#deathnote
gọi phân số đó là x
theo đề ta có :
\(\dfrac{2}{9}+x=\dfrac{1}{3}\)
=> \(x=\dfrac{1}{3}-\dfrac{2}{9}=\dfrac{3}{9}-\dfrac{2}{9}=\dfrac{1}{9}\)
Vậy số đó có giá trị là \(\dfrac{1}{9}\)
2:
b=2000*2004
=(2002-2)*(2002+2)
=2002^2-4
=>b<a
1:
a: \(=8\cdot9\left(14+17+19\right)=72\cdot50=3600\)
Bài 1:
\(8\times9\times14+6\times17\times12+19\times4\times18\)
\(=8\times9\times14+3\times2\times17\times2\times2\times3+19\times4\times2\times9\)
\(=8\times9\times14+17\times8\times9+19\times8\times9\)
\(=8\times9\times\left(14+17+19\right)\)
\(=8\times9\times50\)
\(=72\times5\times10\)
\(=360\times10\)
\(=3600\)
Bài 2:
Ta có:
\(a=2022\times2022\)
Và: \(b=2000\times2004\)
Mà: \(2022>2000,2022>2004\)
\(\Rightarrow2022\times2022>2000\times2004\)
\(\Rightarrow a>b\)
2020/2019 x 2019/2018 x 2018/2017 x....................3/2
= 2020/2
= 1010
Lời giải:
$S=1-3+3^2-3^3+...-3^{2021}+3^{2022}$
$3S=3-3^2+3^3-3^4+...-3^{2022}+3^{2023}$
$\Rightarrow S+3S=3^{2023}-1$
$\Rightarrow 4S=3^{2023}-1$
$\Rightarrow 4S-3^{2023}=-1$
\(\dfrac{2021\times2023-1}{2020\times2023+2022}\\ =\dfrac{2023\times\left(2020+1\right)-1}{2023\times2020+2022}\\ =\dfrac{2023\times2020+2023\times1-1}{2023\times2020+2022}\\ =\dfrac{2023\times2020+2023-1}{2023\times2020+2022}\\ =\dfrac{2023\times2020+\left(2023-1\right)}{2023\times2020+2022}\\ =\dfrac{2023\times2020+2022}{2023\times2020+2022}\\ =1\)
\(\dfrac{2021\times2023-1}{2020\times2023+2022}=\dfrac{\left(2020+1\right)\times2023-1}{2020\times2023+2022}=\dfrac{2020\times2023+1\times2023-1}{2020\times2023+2022}\)
\(=\dfrac{2020\times2023+2022}{2020\times2023+2022}=1\)