Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
90.10n-10n+2+10n+1-20
=90.10n-10n.102+10n.10-20
=10n.90-10n.100+10n.10-20
=10n.(90-100+10)-20
=10n.0-20
=0-20
=-20
90.10n-10n+2+10n+1-20
=10n+1(9-10+1)-20=10n+1.0-20=0-20=-20
90.10n - 10n+2 + 10n+1 - 20
= 9.10.10n - 10n+1 . 10 + 10n+1 - 20
= 9.10n+1 - 10n+1 . 10 + 10n+1 - 20
= 10n+1.(9 - 10 + 1) - 20
= 10n+1.0 - 20
= 0 - 20
= -20
Bài làm
a) 10^(n + 1) - 6 * 10^n
= 10^n + 10 - 6 * 10^n
= 10^n * ( 10 - 6 )
= 10^n * 4
b) 90 * 10^n - 10(n + 2) + 10^(n + 1)
= 90 * 10^n - 10^n * 10^2 + 10^n * 10
= 10^n * ( 90 - 10^2 + 10 )
= 10^n * ( 90 - 100 + 10 )
= 10^n * 0
= 0
Bài làm :
\(a,10^{n+1}-6.10^n\)
\(=10^n.10-6.10^n\)
\(=10^n.\left(10-6\right)\)
\(=10^n.4\)
\(b,90.10^n-10^{n+2}+10^{n+1}\)
\(=90.10^n-10^n.10^2+10^n.10\)
\(=10^n.\left(90-100+10\right)\)
\(=10^n.0\)
\(=0\)
Học tốt nhé
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Rút gọn:
a, \(10^{n+1}+6.10^n\)
b, \(90.10^n-10^{n+2}+10^{n+1}\)
c, \(2,5.5^{n-1}.10+5^n-6.5^{n-1}\)
a/ \(10^{n+1}+6.10^n=10^n.10+6.10^n=10^n\left(10+6\right)=10^n.16\)
b/ \(90.10^n-10^{n+2}+10^{n+1}=90.10^n-10^n.10^2+10^n.10=10^n\left(90-100+10\right)=0\)
c/ \(2,5.5^{n-1}.10+5^n-6.5^{n-1}=2,5.5^n.\dfrac{1}{5}+5^n-6.5^n.\dfrac{1}{5}=5^n\left(\dfrac{1}{2}+1+\dfrac{6}{5}\right)=5^n.\dfrac{3}{2}\)
a: \(\Leftrightarrow10n^2-10n+11n-11+1⋮n-1\)
=>\(n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)
b: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\)
=>\(n\in\left\{0;-1;-2;1\right\}\)
90.10n -10n+2 +10n+1-20
= 90.10n - 10n.102 + 10n .10 - 20
=10n . ( 90 - 100 + 10 ) - 20
= 10n .0 -20
= 0 - 20
= -20