K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

b. + Vì \(|6-2x|\ge0\)\(\forall x\)

\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)

\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)

Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0

                                    \(\Leftrightarrow\)2x=6

                                   \(\Leftrightarrow\)x=3

+ Vì -\(|6-2x|\le0\forall x\)

\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)

\(\Rightarrow B\le5\forall x\)

Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)

                                \(\Leftrightarrow2x=1\)

                                \(\Leftrightarrow x=\frac{1}{2}\)

c,+ Vì \(|x+1|\ge0\forall x\)

\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)

\(\Rightarrow C\ge3\forall x\)

Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)

                                 \(\Leftrightarrow x=-1\)

+ Vì \(-|x+1|\le0\forall x\)

\(\Rightarrow3-|x+1|\le3+0\forall x\)

\(\Rightarrow C\le3\forall x\)

Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)

                                     \(\Leftrightarrow x=-1\)

Mình chỉ làm vậy thôi nhé!

10 tháng 8 2018

THANKS  BẠN NHIỀU NHA

NM
6 tháng 9 2021

ta có 

\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)

Dấu bằng xảy ra khi \(-5\le x\le-2\)

\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)

Dấu bằng xảy ra khi \(x=2\)

\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)

Dấu bằng xảy ra khi \(x\ge2\)

3 tháng 8 2023

Nguyễn Minh Quang sai dấu câu A rồi

 

24 tháng 8 2017

a, Ta có: \(A=\left|x+2\right|+\left|x-6\right|=\left|x+2\right|+\left|6-x\right|\ge\left|x+2+6-x\right|=8\)

Dấu "=" xảy ra khi \(\left(x+2\right)\left(6-x\right)\ge0\Rightarrow-2\le x\le6\)

Vậy MinA = 8 khi \(-2\le x\le6\)

b, Ta có: \(B=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|7-x\right|\right)+\left(\left|x+2\right|+\left|8-x\right|\right)\)

\(\ge\left|x+5+7-x\right|+\left|x+2+8-x\right|=12+10=22\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)\left(7-x\right)\ge0\\\left(x+2\right)\left(8-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}-5\le x\le7\\-2\le x\le8\end{cases}}\Rightarrow-2\le x\le8}\)

Vậy MinB = 22 khi \(-2\le x\le8\)

c, Ta có: \(C=\left|x-3\right|+\left|x-4\right|+\left|x-5\right|=\left(\left|x-3\right|+\left|5-x\right|\right)+\left|x-4\right|\)

Vì \(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=2\forall x\)  

Và \(\left|x-4\right|\ge0\forall x\) 

\(\Rightarrow B=\left(\left|x-3\right|+\left|x-5\right|\right)+\left|x-4\right|\ge2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-3\right)\left(5-x\right)\ge0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}3\le x\le5\\x=4\end{cases}\Rightarrow}x=4}\)

Vậy MinC = 2 khi x = 4

22 tháng 2 2018

Ta có : 

\(A=\frac{\left(a+1\right)\left(a+2\right)\left(a+3\right).....\left(a+2003\right)\left(a+2004\right)}{\left(b+5\right)\left(b+6\right)\left(b+7\right).....\left(b+2006\right)\left(b+2007\right)}\)

\(\Leftrightarrow\)\(A=\frac{\left(0+1\right)\left(0+2\right)\left(0+3\right).....\left(0+2003\right)\left(0+2004\right)}{\left(-4+5\right)\left(-4+6\right)\left(-4+7\right).....\left(-4+2006\right)\left(-4+2007\right)}\)

\(\Leftrightarrow\)\(A=\frac{1.2.3.....2003.2004}{1.2.3.....2002.2003}\)

\(\Leftrightarrow\)\(A=\frac{1.2.3.....2003}{1.2.3.....2003}.2004\)

\(\Leftrightarrow\)\(A=2004\)
 

Vậy \(A=2004\)

Câu 1: Có 4 giá trị

Câu 3: \(A\le\dfrac{10}{5}=2\)

27 tháng 1 2022

=> (8 - x)/(x - 5) ∈ Z
=> 8 - x chia hết cho x - 5
=> 3 - (x - 5) chia hết cho x - 5
=> 3 chia hết cho x - 5
=> x - 5 ∈ Ư(3) = (-3 ; -1 ; 1 ; 3)
=> x ∈ (2 ; 4 ; 6 ; 8)
vậy x ∈ (2 ; 4 ; 6 ; 8) mik ko chắc đâu 

22 tháng 8 2017

a) Giá trị nhỏ nhất của biểu thức này là :8

b)Giá trị nhỏ nhất của biểu thức này là :22

22 tháng 8 2017

Các bạn có thể giải thích rõ ràng đc ko ạ!!!

11 tháng 9 2017

Bài 3 : 

Vì \(\left(x-2\right)^2\ge0\forall x\)

Nên :  \(A=\left(x-2\right)^2-4\ge-4\forall x\)

Vậy \(A_{min}=-4\) khi x = 2

11 tháng 9 2017

B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)

B2: 

a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)

\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)

b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)

B3:

Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x = 2

Vậy GTNN của A = -4 khi x = 2