\(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+.....}}}}}\) là bao nhiê...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}\)

Nhận xét : A > 0

Ta có : \(A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+....}}}}=A+2\)

\(\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\)

Vì A > 0 nên ta chọn A = 2 

Vậy giá trị của biểu thức là : A = 2

26 tháng 5 2016

Đặt A= biểu thức đó

=>A^2= 2+ A

=>A^2-A-2=0

Giải PT tìm ra A 

p/s: lấy A>0 thôi

12 tháng 11 2015

A2 = \(2+\sqrt{2+\sqrt{2+\sqrt{2.......}}}\)

A= 2 + A 

=> A- A - 2 = 0 

=> A - 2A + A - 2 = 0 

=> A(A - 2) + (A - 2) = 0 

=> (A - 2)(A+ 1) = 0 => A = 2 hoặc A = -1

Mà A > 0 nên A = 2

 

3 tháng 10 2015

Đặt \(A=\left(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\right)\)  nên \(A^2=2+\left(\sqrt{2+\sqrt{2+...}}\right)\) ( có vô hạn dấu căn)

hay \(A^2=2+A\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A+1\right)\left(A-2\right)=0\)

Vì A>0 nên A=2

tick nha 

6 tháng 9 2015

Đặt A = \(\sqrt{2+\sqrt{2+....}}\)

A^2 = 2 + \(\sqrt{2+\sqrt{2+....}}\) 

A^2 = 2 + A 

=> A^2 - A - 2  = 0 

=> ( A + 1 )(A-2) = 0

=> A = 2 hoặc A = -1 ( loại A > 0 )

Vậy A = 2 

16 tháng 9 2016

a=2 nhe tk nha

17 tháng 7 2016

Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) . Nhận xét : A > 0

\(\Rightarrow A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}=A+2\)

\(\Rightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\Leftrightarrow\orbr{\begin{cases}A=2\left(\text{nhận}\right)\\A=-1\left(\text{loại}\right)\end{cases}}\)

Vậy A = 2

22 tháng 9 2017

\(\Leftrightarrow\)A=\(\left|x-2010\right|+\left|x-2011\right|\)=\(\left|x-2010\right|+\left|2011-x\right|\)\(\ge\)\(\left|x-2010+2011-x\right|\)=1

Dấu ''='' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2010\ge0\\2011-x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2010\\x\le2011\end{cases}}\)\(\Leftrightarrow\)\(2010\le x\le2011\)

Vậy Min A =1 \(\Leftrightarrow2010\le x\le2011\)

22 tháng 9 2017

chịu !!!