\(^0\)-cos54\(^0\)+co...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\sin36^0-\cos54^0+\cos60^0\)

\(=\sin36^0-\sin36^0+\dfrac{1}{2}=\dfrac{1}{2}\)

b: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^230^0+\sin^260^0\right)\)

=1+1=2

28 tháng 5 2022

`sin36^o -cos54^o +cos60^o`

`=cos54^o -cos54^o +cos60^o`

`=cos60^o=1/2`

_____________________________________________

`sin^2 10^o +sin^2 30^o +sin^2 80^o +sin^2 60^o`

`=cos^2 80^o +cos^2 60^o +sin^2 80^o +sin^2 60^o`

`=(cos^2 80^2 +sin^2 80^o )+(cos^2 60^o +sin^2 60^o )`

`=1+1=2`

18 tháng 8 2017

Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)

a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)

b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)

a: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0+\sin^260^0\right)+\left(\sin^240^0+\sin^250^0\right)\)

=1+1+1+1

=4

b: \(=\left(\cos^25^0+\cos^285^0\right)+\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

\(=1+1+1+1+\dfrac{1}{2}=4+\dfrac{1}{2}=\dfrac{9}{2}\)

27 tháng 7 2019

A=\(\left(sin^215^o+sin^275^o\right)+\left(sin^240^o+sin^250^o\right)+\left(sin^260^o+sin^230^o\right)\)

\(=\left(sin^215^o+cos^215^o\right)+...\)

\(=1\cdot3=3\)

Câu c tương tự mà mk nghĩ đề sai dấu - trước cos^245độ

Nói chung nếu: a+b=90 độ

thì: \(sin^2a+sin^2b=1\)

b) thì áp dụng nếu a+b=90 độ:

\(tana=cotb\) và ngược lại

\(tana\cdot cota=1\)

Nói chung là công thức......

22 tháng 7 2018

Bài 1 :

\(D=cos^220^0+cos^230^0+cos^240^0+cos^250^0+cos^260^0+cos^270^0\)

\(=\left(cos^220^0+cos^270^0\right)+\left(cos^230^0+cos^260^0\right)+\left(cos^240^0+cos^250^0\right)\)

\(=1+1+1=3\)

Bài 2 :

\(E=sin^25^0+sin^225^0+sin^245^0+sin^265^0+sin^285^0\)

\(=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0\)

\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

Bài 3 :

\(F=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(=1-3sin^2\alpha.cos^2\alpha+3sin^2a.cos^2\alpha\)

\(=1\)

Bài 1: 

b: \(\cos\alpha=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

\(\tan\alpha=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)

Bài 2:

\(\sqrt{ab}< =\dfrac{a+b}{2}\)

\(\Leftrightarrow a+b>=2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

10 tháng 8 2018

mk bỏ dấu độ nha . trong toán người ta cho phép

a) ta có : \(cos^215+cos^225+cos^235+cos^245+cos^255+cos^265+cos^275\)

\(=cos^215+cos^275+cos^225+cos^265+cos^235+cos^255+cos^245\) \(=cos^215+cos^2\left(90-15\right)+cos^225+cos^2\left(90-25\right)+cos^235+cos^2\left(90-35\right)+cos^245\) \(=cos^215+sin^215+cos^225+sin^225+cos^235+sin^235+cos^245\)

\(=1+1+1+\dfrac{1}{2}=\dfrac{7}{2}\)

b) ta có : \(sin^210-sin^220+sin^230-sin^240-sin^250-sin^270+sin^280\)

\(=sin^210+sin^280-sin^220-sin^270-sin^240-sin^250+sin^230\) \(=sin^210+sin^2\left(90-10\right)-sin^220-sin^2\left(90-20\right)-sin^240-sin^2\left(90-40\right)+sin^230\) \(=sin^210+cos^210-sin^220-cos^220-sin^240-cos^240+sin^230\) \(=1-1-1+\dfrac{1}{4}=\dfrac{-3}{4}\)

7 tháng 7 2019

a) \(\sqrt{\frac{1+\cos x}{1-\cos x}}-\sqrt{\frac{1-\cos x}{1+\cos x}}=\frac{\sqrt{\left(1+\cos x\right)^2}-\sqrt{\left(1-\cos x\right)^2}}{\sqrt{\left(1-\cos x\right)\left(1+\cos x\right)}}\)

\(=\frac{1+\cos x-1+\cos x}{\sqrt{1-\cos^2x}}=\frac{2\cos x}{\sqrt{\sin^2x}}=\frac{2\cos x}{\sin x}=2\cot x\)

b) \(\frac{1}{\tan x+1}+\frac{1}{\cot x+1}=\frac{\tan x+1+\cot x+1}{\left(\tan x+1\right)\left(\cot x+1\right)}\)

\(=\frac{\tan x+\cot x+2}{\tan x+\cot x+\tan x.\cot x+1}=\frac{\tan x+\cot x+2}{\tan x+\cot x+2}=1\)

c) (ko bt có sai đề ko, làm mãi ko ra) 

d) \(\sin^21^0+\sin^22^0+\sin^23^0+...+\sin^289^0\)

\(=\left(\sin^21^0+\sin^289^0\right)+\left(\sin^22^0+\sin^288^0\right)+...+\sin^245^0\)

\(=\left[\left(\sin^21^0-\cos^289^0\right)+\left(\sin^289^0+\cos^289^0\right)\right]+\)

\(\left[\left(\sin^22^0-\cos^288^0\right)+\left(\sin^288^0+\cos^288^0\right)\right]+...+\sin^245^0\)

\(=\left(0+1\right)+\left(0+1\right)+...+\frac{\sqrt{2}}{2}=\frac{44+\sqrt{2}}{2}\)

NV
1 tháng 10 2020

\(A=\frac{\sqrt{2}}{2}cos^252+\frac{\sqrt{2}}{2}sin^252=\frac{\sqrt{2}}{2}\left(sin^252+cos^252\right)=\frac{\sqrt{2}}{2}\)

\(B=\sqrt{3}.cos^247+\sqrt{3}.sin^247=\sqrt{3}\left(sin^247+cos^247\right)=\sqrt{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán