K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

a)\(x^2-8x+19=x^2-2.x.4+16+3=\left(x+4\right)^2+3\)

Vì \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+3\ge3\Rightarrow x^2-8x+19\ge3\)

Vậy x2-8x+19 luôn nhận giá trị dương

mấy câu kia làm tương tự

19 tháng 12 2016

1)

ĐKXĐ: x\(\ne\)3

ta có :

\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)

để biểu thức A có giá trị = 1

thì :\(\frac{x-3}{2}\)=1

=>x-3 =2

=>x=5(thoả mãn điều kiện xác định)

vậy để biểu thức A có giá trị = 1 thì x=5

30 tháng 12 2016

1)

\(A=\frac{x^2-6x+9}{2x-6}\)

A xác định

\(\Leftrightarrow2x-6\ne0\)

\(\Leftrightarrow2x\ne6\)

\(\Leftrightarrow x\ne3\)

Để A = 1

\(\Leftrightarrow x^2-6x+9=2x-6\)

\(\Leftrightarrow x^2-6x-2x=-6-9\)

\(\Leftrightarrow x^2-8x=-15\)

\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)

8 tháng 3 2021

\(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra <=> x = 3

Vậy MinA = 1

\(B=5x^2-10x+3=5\left(x^2-2x+1\right)-2=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra <=> x = 1

Vậy MinB = -2

\(C=2x^2+8x+y^2-10y+43=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu "=" xảy ra <=> x = -2 ; y = 5

Vậy MinC = 10

8 tháng 3 2021

\(A=x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Dấu"=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(Min_A=1\Leftrightarrow x=3\)

b,\(B=5x^2-10x+3\)

\(=5\left(x^2-2x+1\right)-2\)

\(=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu"=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

Vậy \(Min_B=-2\Leftrightarrow x=1\)

c,\(C=2x^3+8x+y^2-10+43\)

\(=2x^2+8x+8+y^2-10y+25+10\)

\(=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)

\(=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu"=" xảy ra khi \(\orbr{\begin{cases}x+2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy \(Min_C=10\Leftrightarrow x=-2;y=5\)

NV
24 tháng 6 2019

b/ \(3-100x+8x^2=8x^2+x-300\)

\(\Leftrightarrow-101x=-303\)

\(\Rightarrow x=3\)

c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-79x=-158\)

\(\Rightarrow x=2\)

d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

\(\Leftrightarrow-6x=5\)

\(\Rightarrow x=-\frac{5}{6}\)

e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)

\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)

\(\Leftrightarrow13x=130\)

\(\Rightarrow x=10\)

NV
24 tháng 6 2019

\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(\Rightarrow A_{min}=-3\) khi \(x=2\)

\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)

\(\Rightarrow C_{max}=21\) khi \(x=-4\)

\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)

\(\Rightarrow E_{max}=5\) khi \(x=2\)

\(A=\dfrac{6x^2+8x+7+x^2-x-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

Để 4A=x-1 thì \(\dfrac{4}{x-1}=x-1\)

=>x-1=2 hoặc x-1=-2

=>x=3(loại) hoặc x=-1(nhận)

22 tháng 8 2019

Ở các dạng bài này bạn rút gọn đến khi không còn biến x => giá trị biểu thức không đổi

a) (2x+6)(4x^2-12x+36) -8x^3 +5

= 8x^3 -24x^2 + 72x + 24x^2 - 72x - 8x^3 + 5

= 5 ( không đổi)

=> Giá trị của biểu thức không phụ thuộc vào giá trị của biến x

14 tháng 9 2019

1. (2x + 6 ) (4x2 - 12x + 36)-8x3 + 5

= 8x3 - 24x2 + 72x + 24x2 - 72x - 8x3 + 5

= (8x3 - 8x3) + (-24x2 + 24x2) + (72x - 72x) + 5

= 5

\(\Rightarrow\) Vậy giá trị của biểu thức trên không phụ thuộc vào biến.

2. (x - 1)3 - (x - 3) (x2 + 3x + 9) - 3x (1 - x )

= (x - 1)3- (x - 3) (x2+ x . 3 + 32) - 3x + 3x2

= x3 - 3x2 .1 +3x.12 -13 - x3 - 33 - 3x + 3x2

= (x3-x3) + (-3x2 + 3x2) + (3x - 3x) + (-13 - 33)

= -28

Vậy giá trị của biểu thức trên không phụ thuộng vào biến.

3. (2x - 3) (3x2 + 1) - 6x (x2 - x + 1 ) + 3x2 + 4x

= 6x3 + 2x -9x2 - 3 - 6x3 + 6x2 - 6x + 3x2 + 4x

= (6x3- 6x3) + (-9x2 + 6x2 + 3x2) + (2x - 6x + 4x) -3

= -3

Vậy giá trị của biểu thức trên không phụ thuộc vào biến

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

27 tháng 10 2019

a) Theo mình thì chỉ min thôi nhé!

\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)

b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(