K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{5x}{x^2+x-6}=\dfrac{5x}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{4x+12+x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{4}{x-2}+\dfrac{x-12}{x^2+x-6}\)

=>\(A=\dfrac{4}{x-2};B=\dfrac{x-12}{x^2+x-6}\)

b: \(\dfrac{5x+31}{x^2-3x-10}=\dfrac{5x+31}{\left(x-5\right)\left(x+2\right)}\)

\(=\dfrac{3x-15+2x+46}{\left(x-5\right)\left(x+2\right)}=\dfrac{3}{x+2}+\dfrac{2x+46}{\left(x-5\right)\left(x+2\right)}\)

=>\(A=\dfrac{3}{x+2};B=\dfrac{2x+46}{\left(x-5\right)\left(x+2\right)}\)

c: \(\dfrac{3x+5}{\left(x-1\right)^2}=\dfrac{3x-3+8}{\left(x-1\right)^2}=\dfrac{3}{x-1}+\dfrac{8}{\left(x-1\right)^2}\)

=>\(A=\dfrac{3}{x-1};B=\dfrac{8}{\left(x-1\right)^2}\)

 

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Lời giải:

Ta có:

$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$

$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$

$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$

Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$

19 tháng 8 2021

A=2(x^2-2.5/4x+25/16)-50/16+7

A=2(x-√10/5)^2+31/8

Vì(x-√10/5)^2>=0 với mọi x

=>A>=31/8

Chọn B

19 tháng 8 2021

\(2x^2-5x+7=2\left(x^2-\dfrac{5}{2}x+\dfrac{25}{16}\right)-\dfrac{25}{8}+7=2\left(x-\dfrac{5}{4}\right)^2-\dfrac{25}{8}+7\ge\dfrac{31}{8}\)

ĐTXR⇔\(x=\dfrac{5}{4}\)

Vậy minA =\(\dfrac{31}{8}\)khi x=\(\dfrac{5}{4}\)

Đáp án: \(B:\dfrac{31}{8}\)

Ta có: \(\dfrac{10x-5}{18}+\dfrac{x+3}{12}\ge\dfrac{7x+3}{6}-\dfrac{12-x}{9}\)

\(\Leftrightarrow\dfrac{2\left(10x-5\right)}{36}+\dfrac{3\left(x+3\right)}{36}\ge\dfrac{6\left(7x+3\right)}{36}-\dfrac{4\left(12-x\right)}{36}\)

\(\Leftrightarrow20x-10+3x+9\ge43x+9-48+4x\)

\(\Leftrightarrow23x-1-47x+39\ge0\)

\(\Leftrightarrow-24x+38\ge0\)

\(\Leftrightarrow-24x\ge-38\)

hay \(x\le\dfrac{19}{12}\)

Vậy: S={x|\(x\le\dfrac{19}{12}\)}

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

a) Ta có: \(P=\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)

\(=\left(\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x-9}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x-3}{x^2-1}\)

\(=\dfrac{3x-3+x-9-2x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x-3}\)

\(=\dfrac{2x-14}{x-3}\)

b) Ta có: \(x^2-9=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)

Thay x=-3 vào biểu thức \(P=\dfrac{2x-14}{x-3}\), ta được:

\(P=\dfrac{2\cdot\left(-3\right)-14}{-3-3}=\dfrac{-20}{-6}=\dfrac{10}{3}\)

Vậy: Khi \(x^2-9=0\) thì \(P=\dfrac{10}{3}\)

c) Để P nguyên thì \(2x-14⋮x-3\)

\(\Leftrightarrow2x-6-8⋮x-3\)

mà \(2x-6⋮x-3\)

nên \(-8⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(-8\right)\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow x\in\left\{4;2;5;1;7;-1;11;-5\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{4;2;5;7;11;-5\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{4;2;5;7;11;-5\right\}\)