Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $|x+2|=a$ với $a\geq 0$. Khi đó:
$A=\frac{3+2a}{1+a}=\frac{2(1+a)+1}{1+a}=2+\frac{1}{1+a}$
Vì $a\geq 0$ với mọi $x$ nên $1+a\geq 1$
$\Rightarrow A=2+\frac{1}{1+a}\leq 2+\frac{1}{1}=3$
Vậy $A_{\max}=3$. Giá trị này đạt tại $a=0\Leftrightarrow |x+2|=0\Leftrightarrow x=-2$
Để M bé nhất => \(|x-5|\)bé nhất.
\(\Rightarrow|x-5|=0\Rightarrow x-5=0\Rightarrow x=5\)
Thay x vào M, ta có:
\(M=|x-2|+|x-3|+|x-4|+|x-5|\)
\(\Rightarrow M=|5-2|+|5-3|+|5-4|+|5-5|\)
\(\Rightarrow M=3+2+1+0=6\)
Vậy M có giá trị nhỏ nhất = 6 khi x = 5.
\(\left|x-2\right|+\left|x-5\right|=\left|-x+2\right|+\left|x-5\right|\ge\left|-x+2+x-5\right|=3\)(1)
\(\left|x-3\right|+\left|x-4\right|=\left|-x+3\right|+\left|x-4\right|\ge\left|-x+3+x-4\right|=1\)(2)
\(M\ge3+1=4\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(-x+2\right).\left(x-5\right)\ge0\\\left(-x+3\right).\left(x-4\right)\ge0\end{cases}\Leftrightarrow3\le x\le4}\)
Vậy...
\(\dfrac{4^5\cdot10\cdot5^6+25^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{\left(2^2\right)^5\cdot2\cdot5\cdot5^6+\left(5^2\right)^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{10}\cdot2\cdot5\cdot5^6+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{11}\cdot5^7+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^8\cdot5^7\left(2^3+5^3\right)}{2^5\cdot5^4\left(2^3+5^3\right)}\\ =\dfrac{2^8\cdot5^7}{2^5\cdot5^4}\\ =2^3\cdot5^3\\ =8\cdot125\\ =1000\)
Gọi đa thức \(P\left(x\right)=\left(-x^2\right)+x^4+1\)
\(\Rightarrow P\left(x\right)=\left(-x^2\right)+\left(x^2\right)^2+1\)
\(\Rightarrow P\left(x\right)=x^2+1\)
Mà \(x^2\ge0\forall x\)
\(\Rightarrow P\left(x\right)=x^2+1>0\)
=> \(P\left(x\right)=\left(-x^2\right)+x^4+1\) không có nghiệm
Gọi \(A=5-\left[\left(-x^2\right)+x^4\right]\)
Để \(A_{max}=5-\left[\left(-x^2\right)+x^4\right]\)
Thì \(\left(-x^2\right)+x^4_{min}\)hay \(x^2_{min}\left(c.a\right)\)
Mà \(x^2\ge0\forall x\).Dấu "=" xảy ra \(\Leftrightarrow x=0\)
\(\Rightarrow A_{max}=5\Leftrightarrow x=0\)
Tính giá trị của đa thức sau biết x=2018
N=x^6-2017x^5-2017x^4-2017x^3-2017x^2-2017x-2017
Help me :(((
Ta có : x - 1 = 2018 - 1 = 2017
N = x6 - 2017x5 - 2017x4 - 2017x3 - 2017x2 - 2017x - 2017
N = x6 - ( x - 1 ).x5 - ( x - 1 ).x4 - ( x - 1 ).x3 - ( x - 1 ).x2 - ( x - 1 ).x - ( x - 1 )
N = x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x + 1
N = 1