K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2020

undefined

NV
5 tháng 5 2021

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3\left(x^2-4x\right)-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3\left(x^2-4x\right)-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-13x-10>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-11x-14>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

30 tháng 4 2021

3x2 - 12x - |x - 2| > 12

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-x+2>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x+x-2>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm là \(S=\left(-\infty;-1\right)\cup\left(5;+\infty\right)\)

A=(-3;5] hợp [8;10] hợp [2;8)

=(-3;5) hợp [2;8) hợp [8;10]

=(-3;8) hợp [8;10]

=(-3;10]

B=[0;2] hợp (-vô cực;5] hợp (1;+vô cực)

=(-vô cực;5] hợp (1;+vô cực)

=(-vô cực;+vô cực)=R

C=[-4;7] hợp (0;10)

Vì (0;7] thuộc (0;10) nên [-4;7] hợp (0;10)=[-4;10)

D=(-vô cực;3] hợp (-5;+vô cực)

=(-5;3]

E=(3;+vô cực)\(-vô cực;1]

=(3;+vô cực)(Vì ko có phần tử nào có trong (3;+vô cực) nằm trong(-vô cực;1])

F=(1;3]\[0;4)=rỗng(Bởi vì (1;3] là tập con của [0;4))

4 tháng 8 2023

em cảm ơn ạaa 

NV
25 tháng 3 2021

\(\left|x^2-4x+3\right|=x^2-4x+3\Leftrightarrow x^2-4x+3\ge0\)

\(\Rightarrow x\in(-\infty;1]\cup[3;+\infty)\)

11 tháng 9 2023

\(mx^2-4x+m-3=0\left(1\right)\)

Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)

\(\Leftrightarrow3< m< 4\)

14 tháng 12 2023

Ta có:

\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\) 

+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)

          \(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)

          \(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

Mặt khác:

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

Để A, G, I thẳng hàng 

=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)