Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1+2+3+4+5+...+104+105}{1-2+3-4+...+103-104+105}\)
Giá trị của tử A là:
\(\frac{105\left(105+1\right)}{2}=5565\)
Giá trị của mẫu A là:
\(1-2+3-4+...+103-104+105\)
\(=\left(-1\right)+\left(-1\right)+...+\left(-1\right)+105\)
\(=52\times\left(-1\right)\)
\(=-52\)
\(\Rightarrow A=\frac{5565}{-52}\)
\(\Rightarrow A=-\frac{5565}{52}\)
Chúc bạn học tốt
\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)
\(< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(< \frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)
\(< \frac{1}{2^2.3.5^2.7}\)
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)
\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)
Vậy \(A< B\)
105 nhe bn!mk giai sau nhe!
Đặt tử số là B=1+2+3+....+105
Số các số hạng của B là
(105-1):1+1=105(số)
Tổng B là:
(105+1)x105:2=5565
Đặt mẫu số là C =1-2+3-4+...+103-104+105
C=(1-2)+(3-4)+...+(103-104)+105
C=-1+(-1)+...+(-1)(52 số hạng) + 105
C=-52 + 105
C=53
Vậy A=\(\dfrac{B}{C}\)=\(\dfrac{5565}{53}=105\)