K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK: \(x-9\ne0\Rightarrow x\ne9\)

\(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)

\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)

2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)

\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)

\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)

24 tháng 12 2021

Câu 12: Ko có câu nào đúng

29 tháng 7 2017

a) \(x^2=49\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

17 tháng 10 2021

1d 2a 3c 4b 5a

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 5:

\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)

Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.

$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất

$\Rightarrow \sqrt{x}-2=-1$

$\Leftrightarrow x=1$ (thỏa mãn đkxđ)

 

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 6:

$D(\sqrt{x}+1)=x-3$

$D^2(x+2\sqrt{x}+1)=(x-3)^2$

$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên 

Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên 

Với $D=0\Leftrightarrow x=3$ (tm)

Với $\sqrt{x}$ nguyên:

$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$

$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$

$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$

$\Leftrightarrow x=0; 1$

Vì $x\neq 1$ nên $x=0$.

Vậy $x=0; 3$

3 tháng 5 2023

\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\left(\dfrac{\sqrt{3}-1}{4}\right)^2}=\dfrac{\sqrt{12+2\sqrt{3}}}{4}\)

\(\Rightarrow2\cos\alpha=\dfrac{\sqrt{12+2\sqrt{3}}}{2}\). Chọn B.

29 tháng 6 2021

\(a,A=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)

\(=4\sqrt{2}\)

\(b,B=\left|1-\sqrt{5}\right|+\sqrt{5+2\sqrt{5}+1}\)

\(=\left|1-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left|1-\sqrt{5}\right|+\left|\sqrt{5}+1\right|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

\(c,C=\dfrac{2+\sqrt{6}+2-\sqrt{6}}{\left(2+\sqrt{6}\right)\left(2-\sqrt{6}\right)}=\dfrac{4}{4-6}=-2\)
 

AH
Akai Haruma
Giáo viên
29 tháng 6 2021

Lời giải:

a. 

\(A=2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)

\(=(2-9+16-5)\sqrt{2}=4\sqrt{2}\)

b.

\(B=\sqrt{(1-\sqrt{5})^2}+\sqrt{(\sqrt{5}+1)^2}=|1-\sqrt{5}|+|\sqrt{5}+1|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

c.

\(C=\frac{2+\sqrt{6}+2-\sqrt{6}}{(2-\sqrt{6})(2+\sqrt{6})}=\frac{4}{2^2-6}=-2\)

13 tháng 6 2021

a, \(B=\frac{\sqrt{a}+3}{2\sqrt{a}-6}-\frac{3-\sqrt{a}}{2\sqrt{a}+6}=\frac{\left(2\sqrt{a}+6\right)\left(\sqrt{a}+3\right)+\left(2\sqrt{a}-6\right)\left(\sqrt{a}-3\right)}{4a-36}\)

\(=\frac{2a+12\sqrt{a}+18+2a-12\sqrt{a}+18}{4a-36}=\frac{4a+36}{4a-36}=\frac{a+9}{a-9}\)

b, Ta có : \(B>1\Rightarrow\frac{a+9}{a-9}>1\Leftrightarrow\frac{a+9}{a-9}-1>0\)

\(\Leftrightarrow\frac{a+9-a+9}{a-9}>0\Leftrightarrow\frac{18}{a-9}>0\Rightarrow a-9>0\Leftrightarrow a>9\)vì 18 > 0 

\(B< 1\Rightarrow\frac{a+9}{a-9}< 1\Leftrightarrow\frac{a+9}{a-9}-1< 0\)

\(\Leftrightarrow\frac{a+9-a+9}{a-9}< 0\Leftrightarrow\frac{18}{a-9}< 0\Rightarrow a-9< 0\Leftrightarrow a< 9\)vì 18 > 0 

c, Ta có : \(B=4\Rightarrow\frac{a+9}{a-9}=4\Rightarrow a+9=4a-36\Leftrightarrow3a=45\Leftrightarrow a=15\)

Vậy a = 15 thì B = 4