K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

Theo đề bài, ta có:

\(\frac{a}{b}=\frac{2,1}{2,8}\Rightarrow\frac{a}{2,1}=\frac{b}{2,8}\)

Theo tính chất của dãy tỉ số bằng nhau, ta có:

  \(\frac{a}{2,1}=\frac{b}{2,8}=\frac{5a-4b}{5.2,1-4.2,8}=\frac{-1}{-0,7}=\frac{10}{7}\)

\(.\frac{a}{2,1}=\frac{10}{7}\Rightarrow a=3\)

\(.\frac{b}{2,8}=\frac{10}{7}\Rightarrow b=4\)

\(\Rightarrow a^2+b^2=3^2+4^2=9+16=25\)

cho mk nhé

14 tháng 12 2016

Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\) => \(\frac{a}{2,1}=\frac{b}{2,7}\) => \(\frac{5a}{10,5}=\frac{4b}{10,8}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5a}{10,5}=\frac{4b}{10,8}=\frac{5a-4b}{10,5-10,8}=\frac{-1}{-0,3}=\frac{1}{0,3}\)

=> 5a=\(\frac{1}{0,3}.10,5=35\) => a=7

4b=\(\frac{1}{0,3}.10,8=36\) => b=9

Vậy a=7; b=9

14 tháng 12 2016

ta có :\(\frac{a}{b}\) =\(\frac{2,1}{2,7}\) =>\(\frac{a}{2,1}\) =\(\frac{b}{2,7}\)

=>\(\frac{5a}{10,5}\) =\(\frac{4b}{10,8}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{5a}{10,5}\) =\(\frac{4b}{10,8}\) =\(\frac{5a-4b}{10,5-10,8}\) =\(\frac{-1}{-0,3}\)

\(\frac{a}{2,1}\) =\(\frac{1}{0,3}\) => a=7

\(\frac{b}{2,7}\) =\(\frac{1}{0,3}\) =>b=9

=>(a-b)2= (7-9)2=(-2)2=4

24 tháng 12 2016

Bài 1:
\(\frac{x}{-8}=\frac{-18}{x}\)

\(\Rightarrow x^2=144\)

\(\Rightarrow x=\pm12\)

Vậy \(x=\pm12\)

Bài 3:
Giải:
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\Rightarrow\frac{a}{2,1}=\frac{b}{2,7}\Rightarrow\frac{a}{21}=\frac{b}{27}\Rightarrow\frac{a}{7}=\frac{b}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{7}=\frac{b}{9}=\frac{5a}{35}=\frac{4b}{36}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)

+) \(\frac{a}{7}=1\Rightarrow a=7\)

+) \(\frac{b}{9}=1\Rightarrow b=9\)

\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=\left(-2\right)^2=4\)

Vậy \(\left(a-b\right)^2=4\)

Bài 4:

Giải:

Ta có: \(\frac{a}{b}=\frac{9,6}{12,8}\Rightarrow\frac{a}{9,6}=\frac{b}{12,8}\Rightarrow\frac{a}{96}=\frac{b}{128}\Rightarrow\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\)

\(\Rightarrow a=3k,b=4k\)

\(a^2+b^2=25\)

\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=25\)

\(\Rightarrow9.k^2+16.k^2=25\)

\(\Rightarrow25k^2=25\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

+) \(k=1\Rightarrow a=3;b=4\)

+) \(k=-1\Rightarrow a=-3;b=-4\)

\(\Rightarrow\left|a+b\right|=\left|3+4\right|=\left|-3+-4\right|=7\)

Vậy \(\left|a+b\right|=7\)

 

31 tháng 12 2016

Áp dụng BĐT

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)Ta có:

\(\left|2x-7\right|+\left|2x+1\right|=\left|2x-7\right|+\left|-2x-1\right|\ge\left|2x-7+\left(-2x-1\right)\right|=8\)

\(\left|2x-7\right|+\left|2x+1\right|\ge\)8 nên không có số nguyên x nào thỏa mãn đề ra

20 tháng 11 2016

2.1 là 2x1 hay 2,1?

21 tháng 11 2016

Bạn nói thé tớ cũng không hiểu cho lắm

...

29 tháng 11 2019

Các bạn giúp mình nhé ! Mình đang cần gấp

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)

Mà a+b+c+d khác 0

=> b+c+d = a+c+d = b+a+d = c+b+a

=> b = a = c = d

Ta có:

\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)

\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)

\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)

\(P=1-1-1-1=-2\)

16 tháng 5 2017

khó úa z mik ko giai duoc k cho mik ik mik kb cho

17 tháng 7 2017

câu b có phải 2011 hông zậy mà sao lạ dữ

16 tháng 3 2017

I don't know

16 tháng 3 2017

Bài 2:

Giải:

Ta có: \(\frac{a}{b}=-\frac{2}{3}\Rightarrow\frac{a}{-2}=\frac{b}{3}\)

Đặt \(\frac{a}{-2}=\frac{b}{3}=k\Rightarrow a=-2k;b=3k\)

\(M=\frac{5a+2b}{3a-4b}=\frac{-10k+6k}{-6k-12k}=\frac{-4k}{-18k}=\frac{2}{9}\)

Vậy \(M=\frac{2}{9}\)

27 tháng 8 2020

a) Ta có: \(3a=2b\Leftrightarrow\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\) (1)

Và \(4b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\) (2)

Từ (1) và (2) => \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)

\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)

27 tháng 8 2020

a) \(\hept{\begin{cases}3a=2b\\4b=5c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\Rightarrow}\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

-a - b + c = -52 => -( a + b - c ) = -52

                         => a + b - c = 52

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b-c}{10+15-12}=\frac{52}{13}=4\)

\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)

b) \(C=\frac{2x^2-5x+3}{2x-1}\)( ĐKXĐ : \(x\ne\frac{1}{2}\))

\(\left|x\right|=\frac{3}{2}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{2}\end{cases}}\)

Với x = 3/2 ( tmđk )

=> C = \(\frac{2\cdot\left(\frac{3}{2}\right)^2-5\cdot\frac{3}{2}+3}{2\cdot\frac{3}{2}-1}=\frac{0}{2}=0\)

Với x = -3/2 ( tmđk )

=> C = \(\frac{2\cdot\left(-\frac{3}{2}\right)^2-5\cdot\left(-\frac{3}{2}\right)+3}{2\cdot\left(-\frac{3}{2}\right)-1}=\frac{15}{-4}=-\frac{15}{4}\)