K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a/b=2,1/2,8

nen a/3=b/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{5a-4b}{5\cdot3-4\cdot4}=\dfrac{-1}{-1}=1\)

Do đó: a=3; b=4

\(a^2+b^2=25\)

20 tháng 11 2016

2.1 là 2x1 hay 2,1?

21 tháng 11 2016

Bạn nói thé tớ cũng không hiểu cho lắm

...

20 tháng 12 2016

25

16 tháng 11 2016

Ta Có :

\(\frac{a}{b}=\frac{2,1}{2,7}=\frac{7}{9}\)

=> \(\frac{a}{b}=\frac{7}{9}\Rightarrow\frac{a}{7}=\frac{b}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{7}-\frac{b}{9}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)

=> \(\frac{a}{7}=1\Rightarrow a=7\)

=> \(\frac{b}{9}=1\Rightarrow b=9\)

=> (a - b)2 = (9 - 7)2 = 22 = 4

1 tháng 9 2020

             Bài làm :

Ta có :

\(\frac{a}{b}=\frac{2,1}{2,7}=\frac{7}{9}\)

 \(\Rightarrow\frac{a}{7}=\frac{b}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ;  ta có :

\(\frac{a}{7}-\frac{b}{9}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)

 \(\Rightarrow\orbr{\begin{cases}\frac{a}{7}=1\Rightarrow a=7\\\frac{b}{9}=1\Rightarrow b=9\end{cases}}\)

 \(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=4\)

14 tháng 12 2016

Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\) => \(\frac{a}{2,1}=\frac{b}{2,7}\) => \(\frac{5a}{10,5}=\frac{4b}{10,8}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5a}{10,5}=\frac{4b}{10,8}=\frac{5a-4b}{10,5-10,8}=\frac{-1}{-0,3}=\frac{1}{0,3}\)

=> 5a=\(\frac{1}{0,3}.10,5=35\) => a=7

4b=\(\frac{1}{0,3}.10,8=36\) => b=9

Vậy a=7; b=9

14 tháng 12 2016

ta có :\(\frac{a}{b}\) =\(\frac{2,1}{2,7}\) =>\(\frac{a}{2,1}\) =\(\frac{b}{2,7}\)

=>\(\frac{5a}{10,5}\) =\(\frac{4b}{10,8}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{5a}{10,5}\) =\(\frac{4b}{10,8}\) =\(\frac{5a-4b}{10,5-10,8}\) =\(\frac{-1}{-0,3}\)

\(\frac{a}{2,1}\) =\(\frac{1}{0,3}\) => a=7

\(\frac{b}{2,7}\) =\(\frac{1}{0,3}\) =>b=9

=>(a-b)2= (7-9)2=(-2)2=4

9 tháng 7 2021

\(a-b=11\)

\(P=\dfrac{5a-b}{4a+11}+\dfrac{5b-a}{4b-11}=\dfrac{5a-b}{4a+a-b}+\dfrac{5b-a}{4b-\left(a-b\right)}\)

\(=\dfrac{5a-b}{5a-b}+\dfrac{5b-a}{5b-a}\)

\(=2\)

Vậy...