\(a^2 + b^2\) biết: \(\dfrac{a}{b}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a/b=2,1/2,8

nen a/3=b/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{5a-4b}{5\cdot3-4\cdot4}=\dfrac{-1}{-1}=1\)

Do đó: a=3; b=4

\(a^2+b^2=25\)

17 tháng 11 2018

a) Ta có:

+) a/2=b/3

=>a=2b/3

+) b/5=c/4

=>c=4b/5

Lại có:

a-b+c=49

=> 2b/3 -b + 4b/5 =49

=> 7b/15==49

=> b= 105

Khi đó:

+) a=2b/3=2.105/3=70

+)c=4b/5=4.105/5=84

Vậy a=70; b=105; c=84...

chúc bạn học tốthihi

19 tháng 11 2018

thank!

19 tháng 6 2019

cho hỏi chút

\(\frac{a}{b}=\frac{c}{d}\)

trong đó

\(a=c\) hay \(a\ne c\)

\(b=d\) hay \(b\ne d\)

( bài có thiếu điều kiện ko vậy )

19 tháng 2 2017

bạn ơi , \(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)

hay \(\frac{1+b-c}{c}-\frac{b+c-a}{a}\) vậy bn??//

7 tháng 8 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)

7 tháng 8 2019

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{\left(bk\right)^2+b^2}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\) (1)

Tương tự, ta cũng có \(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(k+1\right)^2}{k^2+1}\) (2)

Từ (1), (2) suy ra \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)

20 tháng 9 2017

Mấy bài dễ tự làm nhé:D

1)

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)

Ta có điều phải chứng minh

\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)

Ta có điều phải chứng minh

25 tháng 10 2017

a,|x213x2−13| = 3232

b, 321232−12 ( 2x-1)=3434

c, |x-1|+2x=2

25 tháng 10 2017

a)\(\left|\dfrac{x}{2}-\dfrac{1}{3}\right|=\dfrac{3}{2}\)

TH1

\(\dfrac{x}{2}-\dfrac{1}{3}=\dfrac{3}{2}\)

=>\(\dfrac{x}{2}=\dfrac{11}{6}\)

=>x=\(\dfrac{11.2}{6}\)

=>x=\(\dfrac{11}{3}\)

TH2

\(\dfrac{x}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)

=>\(\dfrac{x}{2}=-\dfrac{3}{2}+\dfrac{1}{2}\)

=>\(\dfrac{x}{2}=-1\)

=>x=-2

12 tháng 7 2017

Ta có:

\(a=\left|-\dfrac{1}{3}\right|=\dfrac{1}{3}\)

Thay vào biểu thức đề bài ta được:

\(A=a-b+c=\dfrac{1}{3}-\dfrac{5}{4}+\dfrac{-1}{5}\)

\(=-\dfrac{67}{60}\)

Chúc bạn học tốt!!!

12 tháng 7 2017

sao khó z

28 tháng 1 2020

Bài 1:

a) Ta có:

\(\frac{x}{3}=\frac{y}{7}\)\(x.y=84.\)

Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)

Lại có: \(x.y=84\)

\(\Rightarrow3k.7k=84\)

\(\Rightarrow21.k^2=84\)

\(\Rightarrow k^2=84:21\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2.\)

+ TH1: \(k=2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)

+ TH2: \(k=-2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)

Bài 2:

a) Ta có:

29 tháng 1 2020

Tham khảo nha:

Biến đổi biểu thức tương đương : (x^2 - 1) /2 =y^2

Ta có: vì x,y là số nguyên dương nên

+) x>y và x phải là số lẽ.

Từ đó đặt x=2k+1 (k nguyên dương);

Biểu thức tương đương 2*k*(k+1)=y^2 (*);

Để ý rằng:

Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : {1,y, y^2} ;

từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3.

Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Chúc bạn học có hiệu quả!