K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

bài này chị bt làm rồi nhưng làm hơi dài

chị bận tối chị viết cho nha

hihihhihhi

4 tháng 12 2014

= x3 + y3 + z3 + 3x2yz + 3xy2z + 3xyz2 - x3 -y3 - z3

=3x2yz + 3xy2z + 3xyz2

= 3xyz( x + y + z)

4 tháng 12 2014

b.

x^4+2012x^2+2012x-x+2012=

(x^4-x)+2012(x^2+x+1)=

x(x-1)(x^2+x+1)+2012(x^2+x+1)=

(x+2012)(x^2+x+1)

 

14 tháng 5 2018

Từ dữ kiện đề bài => x + y + z = xyz

Ta có : 

\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

                                                                                                                   \(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)

Tương tự với hai hạng tử còn lại , suy ra 

\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy Max = 3/2 <=> x = y = z 

Nguồn : Đinh Đức Hùng 

5 tháng 12 2017

bài này esay thôi:

ta có \(x+y+z\le3\Leftrightarrow\left(x+y+z\right)^2\le9.\)

Ta lại có:\(\left(x+y+z\right)^2\ge3\left(xy+zx+zy\right)\)

\(\Leftrightarrow9\ge3\left(xy+yz+xz\right)\Leftrightarrow3\ge xy+xz+yz\)

Ta có:

\(VT=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+zx+zy}+\frac{1}{xy+yz+xz}+\frac{2010}{xy+xz+yz}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{2010}{xy+yz+xz}\)\(\ge\frac{9}{3^2}+\frac{2010}{3}=1+670=671\left(đpcm\right).\)

Dấu = xay ra khi \(x=y=z=1\)

5 tháng 12 2017

Cho mình hỏi lầu trên cái, esay là gì thế? Bạn đánh nhầm từ easy phải không?

AH
Akai Haruma
Giáo viên
7 tháng 9

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{1}{6x+y+z}\leq \frac{1}{64}(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{1}{64}(\frac{6}{x}+\frac{1}{y}+\frac{1}{z})$

Tương tự:

$\frac{1}{x+6y+z}\leq \frac{1}{64}(\frac{1}{x}+\frac{6}{y}+\frac{1}{z})$
$\frac{1}{x+y+6z}\leq \frac{1}{64}(\frac{1}{x}+\frac{1}{y}+\frac{6}{z})$
Cộng theo vế các BĐT trên và thu gọn thì:

$A\leq \frac{1}{64}(\frac{8}{x}+\frac{8}{y}+\frac{8}{z})=\frac{1}{8}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{xy+yz+xz}{8xyz}=\frac{4xyz}{8xyz}=\frac{1}{2}$

Vậy $A_{\max}=\frac{1}{2}$

Giá trị này đạt tại $x=y=z=\frac{3}{4}$

3 tháng 12 2018

\(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}\)

\(M=\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}+\frac{y}{y+yz+xyz}\)

\(M=\frac{yz}{1+y+yz}+\frac{1}{1+y+yz}+\frac{y}{y+yz+1}\)

\(M=\frac{yz+y+1}{1+y+yz}\)

Tham khảo nhé~

3 tháng 4 2018
https://i.imgur.com/p4ArziJ.jpg
21 tháng 5 2019

Ta có :x + y + z = -1 \(\Rightarrow\)x + y =-( 1 + z )

 xy + yz + xz = 0 \(\Rightarrow\)xy = - z ( x + y ) = z ( z + 1 )

Tương tự : xz = y ( y + 1 ) ; yz = x . ( x + 1 )

\(M=\frac{z\left(z+1\right)}{z}+\frac{y\left(y+1\right)}{y}+\frac{x\left(x+1\right)}{x}=x+y+z+3=2\)