\(\frac{1}{x^2+1}+\frac{1}{y^2+1}=\frac{2}{xy+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

Xét \(xy>1\)

Ta chứng minh: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\ge0\)(đúng)

Dấu = xảy ra khi \(x=y\) (loại)

Xét \(xy< 1\)

Ta chứng minh: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\le0\)

\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\le0\)(đúng)

Dấu = xảy ra khi \(x=y\) (loại)

Từ (1) và (2) \(\Rightarrow xy=1\)

\(\Rightarrow P=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{2}{1+xy}=\frac{4}{1+xy}=\frac{4}{2}=2\)

12 tháng 4 2018

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0 

Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)

Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

                \(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)

\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)

\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)

Dấu "=" xảy ra khi: x=y=z>0

12 tháng 4 2018

Bài 2: 

+) Với y=0 <=> x=0

Ta có: 1-xy= 12 (đúng) 

+) Với \(y\ne0\)

Ta có: \(x^6+xy^5=2x^3y^2\)

\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)

\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)

\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)

22 tháng 7 2018

Sorry mình mới học lớp 5

14 tháng 3 2020

mk cx vậy

7 tháng 11 2018

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\Rightarrow\frac{x+y+z}{xyz}=0\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(N=\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=\frac{x^3+y^3+z^3}{xyz}=\frac{3xyz}{xyz}=3\)