Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé
biết đường mà cảm ơn đi, hahaha:
theo đề bài x và y đã cho suy ra: a=x.m và b=y.m. Nên ta thay vào z sẽ có a+b/2m = x.m+y.m=2m
x=a/m suy ra x cũng bằng 2a/2m nên bằng 2xm/2m...Mà x.m+y.m (dòng trên) lớn hơn 2xm do y>x nên ta được z>x
Tương tự với y
Vậy x < z < y (đpcm) haha ♥
x=a/m; y=b/m; x<y suy ra a/m<b/m suy ra a<b
suy ra a+a<a+b suy ra 2a<a+b suy ra 2a/m<a+b/m suy ra 2a/2m<a+b/2m
Hay x<z
Tương tự ta có z<y
Nên x<z<y
Vì x<y nên a<b. Ta có \(x=\frac{a}{m}=\frac{2a}{2m},y=\frac{b}{m}=\frac{2b}{2m}\)
Chọn \(z=\frac{2a+1}{2m}\).Do 2a<2a+1 nên x<z(1)
Do a<b nên a+1 < b suy ra 2a+1< 2b
TA có 2a+1< 2a+2< 2b nên 2a+1<2b do đó z<y(2)
Từ (1),(2) suy ra x<z<y
Ta có: x<y => \(\frac{a}{m}< \frac{b}{m}\)<=> a<b
Lại có:\(x=\frac{a}{m}=\frac{2a}{2m};y=\frac{b}{m}=\frac{2b}{2m}\)
vì a<b (a, b thuộc Z) <=> a+1 =< b hay 2a+2 =< 2b
=> 2a <2a+1<2a+2=<2b hay 2a<2a+1<2b
do đó: \(\frac{2a}{2m}< \frac{2+1}{2m}< \frac{2b}{2m}\)
=> x<y<z
Nguồn: loigiaihay.com
Ta có x=\(\frac{a}{m}=\frac{2a}{2m}\) , y=\(\frac{b}{m}=\frac{2b}{2m}\)
Vì x<y nên a<b
Có a<b =>2a<a+b (1)
Có a<b =>a+b<2b (2)
Từ (1) và (2) =>2a<a+b<2b =>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<y<z ( đpcm)