\(x=\frac{a}{m}\), \(y=\frac{b}{m}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

Do x < y

=> a/m < b/m

=> a/m + a/m < a/m + b/m < b/m + b/m

=> 2a/m < a+b/m < 2b/m

=> a/m < a+b/m : 2 < b/m

=> a/m < a+b/m × 1/2 < b/m

=> a/m < a+b/2m < b/m

=> x < z < y

2 tháng 9 2016

=> am<bm

=>am+am<am+bm =>a.2m<m.(a+b)

=>a/m<a+b/2m         (1)

=>am+bm<bm+bm=>m(a+b)<b.2m

=>a+b/2m<b/m      (2)

tu (1) va (2)

=>a/m<a+b/m2<b/m

ta có: x < y hay a/m < b/m => a < b

so sánh x,y,z ta chuyển chúng cùng mẫu: 2m

x = a/m = 2a / 2m và y = b/m = 2b / 2m và Z = (a + b) / 2m

* Mà a < b :

=> a + a < b + a

hay 2a < b + a

=> x < Z (1)

* mà a < b:

=> a + b < b + b

hay a + b < 2b

=> Z < y (2)

từ (1) và (2) => nếu chọn Z = (a + b) / 2m thì ta có x < Z < y

14 tháng 7 2016

\(x< y\)

\(\Rightarrow\frac{a}{m}< \frac{b}{m};m>0\)

\(\Rightarrow a< b\)

\(\Rightarrow\frac{a+a}{m}< \frac{a+b}{m}\)

\(\Rightarrow\frac{a+a}{2m}< \frac{a+b}{2m}\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)

\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\)

\(\Rightarrow x< z\left(1\right)\)

Tương tự lại có :

\(\frac{a+b}{m}< \frac{b+b}{m}\)

\(\Rightarrow\frac{a+b}{2m}< \frac{b+b}{2m}\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\)

\(\Rightarrow z< y\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow x< z< y\)

Vậy \(x< z< y.\)

5 tháng 9 2017

Ta có: x<y

=>\(\frac{a}{m}< \frac{b}{m}\)

=>a<b

=>a+a<a+b

=>2a<a+b

=>\(\frac{2a}{2m}=\frac{a}{m}< \frac{a+b}{2m}\)

=>x<z (1)

Lại có: x<y

=>a<b

=>a+b<b+b

=>a+b<2b

=>\(\frac{a+b}{2m}< \frac{2b}{2m}=\frac{b}{m}\)

=>z<y (2)

Từ (1) và (2) suy ra x<z<y

24 tháng 8 2016

Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

31 tháng 8 2017

Theo đề ta có :

\(x=\frac{a}{m}\) \(;\)\(y=\frac{b}{m}\)

mà \(x< y\) \(\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)

Có : \(x=\frac{a}{m}\Rightarrow x=\frac{2a}{2m}=\frac{a+a}{2m}\)     ; \(z=\frac{a+b}{2m}\)    và \(y=\frac{b}{m}\Rightarrow y=\frac{2b}{2m}=\frac{b+b}{2m}\) 

* Vì a < b \(\Rightarrow\) a+a < a+b \(\Rightarrow\frac{a+a}{2m}< \frac{a+b}{2m}\)\(\Rightarrow x< z\) \(\left(1\right)\)

* Vì \(a< b\)\(\Rightarrow a+b< b+b\Rightarrow\frac{a+b}{2m}< \frac{b+b}{2m}\Rightarrow z< y\)\(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) nên ta có :

\(\frac{a+a}{2m}< \frac{a+b}{2m}< \frac{b+b}{2m}\Rightarrow x< z< y\) \(\left(đpcm\right)\)

16 tháng 8 2016

Ta có: x<y =>a/m<b/m =>a/m+b/m<(a+b)/2m

=> a/m+b+m<b/m+b/m =>(a+b)/2m<b/m =>z<y(1)

Lại có x<y =>a/m<b/m =>(a+a)/m<b/m+a/m

=>2a/m<(b+a)/m =>a/m<(a+b)/2m

=>x<z(2).Từ (1)và(2)=>điều phải chứng minh

10 tháng 7 2018

Ta có: x<y 

Nên a/m < b/m

==>a<b (vì m>0)

==> a+a <a+b

==> 2a < a+b

==> 2a/2m < a+b/2m (vì 2m>0)

==> a/m < a+b/2m

Do đó x < y.                                        (1)

Ta có: a<b

==> a+b < b+b

==> a+b < 2b

==> a+b/2m < 2b/2m ( vì 2m > 0)

==> a+b/2m < b/m

Do đó z<y.                                             (2)

Từ (1) và (2)

Ta được x<z<y

22 tháng 8 2016

Ta có x = \(\frac{2a}{2m}\)\(\frac{a+b}{2m}\)= z

y = \(\frac{2b}{2m}\)\(\frac{a+b}{2m}\)= z

22 tháng 8 2016

Do x < y => a/m < b/m

=> a/m + a/m < a/m + b/m < b/m + b/m

=> 2x < a+b/m < 2y

=> x < a+b/m : 2 < 2y

=> x < a+b/m . 1/2 < y

=> x < a+b/2m < y

Chứng tỏ ...