K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

Ta có: \(a-b+c=1+2m-2m-1=0\)

Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=-1\\x_2=2m+1\end{matrix}\right.\)

Để biểu thức bài toán xác định thì:

\(\left\{{}\begin{matrix}x_1+x_2=2m\ge0\\3+x_1x_2=2-2m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le1\)

\(\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1\)

\(\Leftrightarrow\sqrt{2m}+\sqrt{2-2m}=2m+1\)

\(\Leftrightarrow2m-\sqrt{2m}+1-\sqrt{2-2m}=0\)

\(\Leftrightarrow\frac{4m^2-2m}{2m+\sqrt{2m}}+\frac{2m-1}{1+\sqrt{2-2m}}=0\)

\(\Leftrightarrow\left(2m-1\right)\left(\frac{2m}{2m+\sqrt{2m}}+\frac{1}{1+\sqrt{2-2m}}\right)=0\)

\(\Leftrightarrow2m-1=0\Rightarrow m=\frac{1}{2}\)

8 tháng 4 2020

Để phương trình có nghiệm x1;x2 thì :

\(\Delta'=\left(m+4\right)^2-\left(m^2-8\right)\)

\(=\left(m^2+8m+16\right)-m^2+8\)

\(=8m+24\ge0\Leftrightarrow m\ge-3\)

Theo hệ thức Viet,ta có :

\(\left\{{}\begin{matrix}x1+x2=2\left(m+4\right)\\x1.x2=m^2-8\end{matrix}\right.\)

a) \(A=x1^2+x2^2-x1-x2=\left(x1+x2\right)^2-\left(x1+x2\right)-2x1x2=4\left(m+4\right)^2-2\left(m+4\right)-2\left(m^2-8\right)\)

\(A=2m^2+30m+66=0\)

\(A=\left(4m+3\right)^2-\frac{519}{8}\ge-\frac{519}{8}\)

b) \(B=2\left(m+4\right)-3\left(m^2-8\right)\)

\(B=-3m^2+2m+32\)

\(B=\frac{97}{3}-\left(3x-1\right)^2\le\frac{97}{3}\Leftrightarrow x=\frac{1}{3}\)

c) \(C=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)

\(C=4\left(m+4\right)^2-3\left(m^2-8\right)\)

\(C=-3m^2+4m+28\)

\(C=\frac{88}{3}-\left(3x-2\right)^2\le\frac{88}{3}\Leftrightarrow x=\frac{2}{3}\)

13 tháng 4 2020

Câu a biến đổi để tìm gtnn sai á g=)))

19 tháng 5 2017

Đầu tiên để pt có 2 nghiệm phân biệt thì \(\Delta'>0\) rồi tìm điều kiện của m

Dùng Vi-ét tính ra m thôi bạn

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

18 tháng 5 2015

x1;x2 là nghiệm của pt 

=> \(x^2_1-3\sqrt{2}x_1-\sqrt{2}=0\Rightarrow x^2_1=3\sqrt{2}x_1+\sqrt{2}\)

\(x^2_2-3\sqrt{2}x_2-\sqrt{2}=0\Rightarrow x^2_2=3\sqrt{2}x_2+\sqrt{2}\)

=> \(A=\frac{2}{3\sqrt{2}x_1+3\sqrt{2}x_2+\sqrt{2}-3\sqrt{2}}+\frac{3\sqrt{2}x_2+3\sqrt{2}x_1+\sqrt{2}-3\sqrt{2}}{2}\)

\(A=\frac{2}{3\sqrt{2}\left(x_1+x_2\right)-2\sqrt{2}}+\frac{3\sqrt{2}\left(x_2+x_1\right)-2\sqrt{2}}{2}\)

Theo VI ét => \(x_1+x_2=3\sqrt{2}\). Thay vào A

=> quy đồng.....

5 tháng 7 2020

Mình

không

bít

làm!

5 tháng 7 2020

Mình

không

bít 

làm!                                                     

12 tháng 4 2018

\(\Delta'\) = (-m2)2 - m2 - 2 = m4 - m2 - 2

để pt có 2 nghiệm x1, x2 thì m4 - m2 - 2 \(\ge\) 0

=> (m2 - \(\dfrac{1}{2}\))2 - \(\dfrac{9}{4}\) \(\ge\) 0

\(\left\{{}\begin{matrix}m^2-\dfrac{1}{2}\le-\dfrac{3}{2}\\m^2-\dfrac{1}{2}\ge\dfrac{3}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m^2\le-1\left(loai\right)\\m^2\ge2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m\ge\sqrt{2}\\m\le-\sqrt{2}\end{matrix}\right.\)

theo hệ thức Vi - ét : \(\left\{{}\begin{matrix}x_1+x_2=2m^2\\x_1.x_2=m^2+2\end{matrix}\right.\)

ta có : \(\dfrac{1}{\sqrt{2}}\)x1x2 = 3\(\sqrt{x_1+x_2}\) <=> \(\dfrac{1}{\sqrt{2}}\).(m2 + 2) - 3.\(\sqrt{2m^2}\) = 0

<=> \(\dfrac{\sqrt{2}.m^2}{2}\) + \(\sqrt{2}\) - \(3\sqrt{2}.m\) = 0

<=> m2 - 6m + 2 = 0

\(\Delta'\) = (-3)2 - 2 = 7 > 0 => pt có 2 nghiệm pb

m1 = \(\dfrac{3-\sqrt{7}}{1}\) = 3-\(\sqrt{7}\) ( loại )

m2 = 3+\(\sqrt{7}\) (TM )

vậy để pt có 2 nghiêm jthoar mãn đk trên thì m = 3+\(\sqrt{7}\)

29 tháng 4 2018

camon bn nkahihi