\(3x^2-cx+2c-1=0\).Tín...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

\(\dfrac{1}{x_1^3}+\dfrac{1}{x_2^3}=\dfrac{x_2^3+x_1^3}{\left(x_1\cdot x_2\right)^3}=\dfrac{\left(x_2+x_1\right)\left(x_2-x_1\cdot x_2+x_1\right)}{\left(x_1\cdot x_2\right)^3}\)(1)

Có x1; x2 là nghiệm của PT nên theo định lý Viet ta có

\(x_1+x_2=\dfrac{c}{3}\\ x_1\cdot x_2=\dfrac{2c-1}{3}\)

Thay vao (1) ta duoc

\(\dfrac{\dfrac{c}{3}\cdot\left(\dfrac{c}{3}-\dfrac{2c-1}{3}\right)}{\left(\dfrac{2c-1}{3}\right)^3}=\dfrac{\dfrac{c\left(1-c\right)}{9}}{\dfrac{\left(2c-1\right)^3}{9}}=\dfrac{c\left(1-c\right)}{\left(2c-1\right)^3}\)

16 tháng 6 2018

cảm ơn bạn

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề

AH
Akai Haruma
Giáo viên
24 tháng 3 2019

Lời giải:

Để PT có 2 nghiệm phân biệt $x_1,x_2$ thì:

\(\Delta'=(m+2)^2-(m^2+m+3)>0\)

\(\Leftrightarrow 3m+1>0\Leftrightarrow m> \frac{-1}{3}\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m^2+m+3\end{matrix}\right.\)

\(x_1x_2=m^2+m+3=(m+\frac{1}{2})^2+\frac{11}{4}\neq 0, \forall m>\frac{-1}{3}\) nên $x_1,x_2\neq 0$ với mọi \(m> \frac{-1}{3}\).

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=1\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=4\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=6\Rightarrow (x_1+x_2)^2=6x_1x_2\)

\(\Leftrightarrow 4(m+2)^2=6(m^2+m+3)\)

\(\Leftrightarrow 2m^2-10m+2=0\)

\(\Leftrightarrow m=\frac{5\pm \sqrt{21}}{2}\) (thỏa mãn)

AH
Akai Haruma
Giáo viên
22 tháng 4 2018

Lời giải:

Áp dụng định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=7\\ x_1x_2=3\end{matrix}\right.\)

Do đó:

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{7}{3}\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{49-6}{3}=\frac{43}{3}\)

Có: \(\frac{7}{3}+\frac{43}{3}=\frac{50}{3}; \frac{7}{3}.\frac{43}{3}=\frac{301}{9}\)

Áp dụng định lý Viete đảo thì \(\frac{7}{3}; \frac{43}{3}\) là nghiệm của PT:

\(X^2-\frac{50}{3}X+\frac{301}{9}=0\)

\(\Leftrightarrow 9X^2-150X+301=0\)

23 tháng 4 2018

nana

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

Trước tiên để pt có 2 nghiệm $x_1,x_2$ thì:

\(\Delta=(2-m)^2-4(m+3)>0\)

\(\Leftrightarrow m^2-8m-8>0(*)\)

Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2-m\\ x_1x_2=m+3\end{matrix}\right.\)

ĐK \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\) trước tiên đòi hỏi $x_1,x_2\neq 0$ hay \(m+3\neq 0\Rightarrow m\neq -3\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(2-m)^2-2(m+3)}{m+3}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(2-m)^2}{m+3}=\frac{7}{2}\Rightarrow 2(2-m)^2=7(m+3)\)

\(\Rightarrow 2m^2-15m-13=0\)

\(\Rightarrow m=\frac{15\pm \sqrt{329}}{4}\). Kết hợp với đk $(*)$ ta thấy không tồn tại $m$ thỏa mãn

8 tháng 6 2017

đúng r đó bn, nhìn nè:

\(\left(x_1-x_2\right)\left(x_1x_2+1\right)=x_1^2x_2+x_1-x_1x_2^2-x_2\)

3 tháng 6 2017

Để pt (1) có nghiệm thì: \(\Delta>0\)\(\Leftrightarrow m^2+4>0\)

\(\Rightarrow\)đúng với \(\forall m\) ( vì \(m^2>0\) và 4 hiển nhiên >0)

theo viet, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)

ta có \(P=\dfrac{x_1^2+x_1-1}{x_1}-\dfrac{x_2^2+x_2-1}{x_2}\)

\(\Leftrightarrow P=\dfrac{x_1^2x_2+x_1x_2-x_2-x_1x_2^2-x_1x_2+x_1}{x_1x_2}\)

\(\Leftrightarrow P=\dfrac{\left(x_1-x_2\right)\left(x_1x_2+1\right)}{x_1x_2}=\dfrac{\left(x_1-x_2\right)0}{x_1x_2}\)( vì \(x_1x_2=-1\) mà -1+1=0)

\(\Leftrightarrow P=0\)