\(\left\{{}\begin{matrix}x+y=2a-1\\x^2+y^2=a^2+2a-3\end{matrix}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

Từ phương trình trên , suy ra :

\(\left(2a-1\right)^2=\left(a^2-2a-3\right)+2xy\)

\(\Leftrightarrow4a^2-4a+1=\left(a^2-2a-3\right)+2xy\)

\(\Leftrightarrow3a^2-2a+4=2xy\)

\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{4}{3}\right)=2xy\)

\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{1}{9}\right)+\frac{11}{3}=2xy\)

\(\Leftrightarrow3\left(a-\frac{1}{3}\right)^2+\frac{11}{3}=2xy\)

Nhận thấy \(VT\ge\frac{11}{3}\)suy ra  \(2xy\ge\frac{11}{3}\) => \(xy\ge\frac{11}{6}\)

Vậy Min(xy) = 11/6 <=> a = 1/3

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

14 tháng 2 2020
  • avt2782845_60by60.jpgNguyễn Lê Phước Thịnh20GP
  • avt2983753_60by60.jpgPhạm Thị Diệu Huyền16GP
  • avt2936543_60by60.jpgVũ Minh Tuấn15GP
  • avt115370_60by60.jpgPhạm Lan Hương13GP
  • avt2711634_60by60.jpgTrần Thanh Phương10GP
  • d1.jpgTrên con đường thành công không có dấu chân của kẻ lười biếng8GP
  • avt3010074_60by60.jpgPhạm Minh Quang7GP
  • avt3099435_60by60.jpgChiyuki Fujito6GP
  • avt3099499_60by60.jpghellokoko6GP
  • avt2922034_60by60.jpgNguyễn Ngọc Lộc

Xin lỗi bạn, mình mới học lớp 7 thôi!!

NV
10 tháng 4 2019

\(\left\{{}\begin{matrix}ax+x+y=4\\ax+y=2a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ax+y+x=4\\ax+y=2a\end{matrix}\right.\)

Thế pt dưới vào pt trên ta có:

\(2a+x=4\Rightarrow x=4-2a\)

Thế vào pt dưới: \(y=2a-ax=2a-a\left(4-2a\right)=2a^2-2a\)

\(\Rightarrow\) Hệ luôn có cặp nghiệm duy nhất

Lại có \(x+y=4-2a+2a^2-2a=2a^2-4a+4\)

\(=2a^2-4a+2+2=2\left(a-1\right)^2+2\ge2\) \(\forall a\) (đpcm)