\(x_1,x_2\) là nghiệm của phương trình \(x^2-2\sqrt{5}x+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

\(\Delta'=\left(-\sqrt{5}\right)^2-1.2=5-2=3>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\sqrt{5}\\x_1x_2=2\end{matrix}\right.\)

\(E=\dfrac{x^2_1+x_1x_2+x^2_2}{x^2_1+x^2_2}\\ =\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}\\ =\dfrac{\left(2\sqrt{5}\right)^2-2}{\left(2\sqrt{5}\right)^2-2.2}\\ =\dfrac{20-2}{20-4}\\ =\dfrac{18}{16}\\ =\dfrac{9}{8}\)
 

26 tháng 2 2022

\(E=\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}=\dfrac{4.5-2}{4.5-2.2}=\dfrac{18}{16}=\dfrac{9}{8}\)

26 tháng 2 2016

B=\(\frac{4m+1}{4m^2+2}\)

26 tháng 2 2016

B=\(\frac{4m+1}{4m^2+2}\)

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

Ta có : \(x^2-5x+m=0\left(a=1;b=-5;c=m\right)\)

Theo hệ thức Vi et ta có : \(x_1+x_2=5;x_1x_2=m\)

Theo bài ra ta có : \(x_1^2+x_2^2+7=2\sqrt{x_2^2-3}+6x_1\)

Thay \(x_1;x_2\)lần lượt là \(x;y\)thì ta có phương trình mới :

\(x^2+y^2+7=2\sqrt{y^2-3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-\sqrt{3}^2}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y-\sqrt{3}}^2+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2y-2\sqrt{3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\left(y-\sqrt{3}+3x\right)\)

\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy+7}{2}=y-\sqrt{3}+3x\)

Mời idol về giải chứ chưa đi sâu vào mấy cái căn này lắm, phá mãi mới ra mà chả biết nhóm vào đâu. 

18 tháng 5 2019

 Phương trình có nghiệm x1,x2

Theo viet ta có

\(\hept{\begin{cases}x_1+x_2=\frac{\sqrt{10}}{2}\\x_1x_2=\frac{1}{4}\end{cases}}\)

 => \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\frac{10}{4}-\frac{1}{2}=2\)

Khi đó

\(P=\sqrt{x_1^4+8\left(2-x_1^2\right)}+\sqrt{x_2^4+8\left(2-x^2_2\right)}\)

   \(=\sqrt{\left(x_1^2-4\right)^2}+\sqrt{\left(x^2_2-4\right)^2}\)

   Mà \(x^2_1+x^2_2=2\)nên \(x^2_1< 2,x^2_2< 2\)

=> \(P=4-x_1^2+4-x^2_2=8-2=6\)

Vậy P=6

AH
Akai Haruma
Giáo viên
18 tháng 12 2017

Lời giải:

Áp dụng hệ thức Viete suy ra với $x_1,x_2$ là hai nghiệm của phương trình thì:

\(\left\{\begin{matrix} x_1+x_2=a\\ x_1x_2=1\end{matrix}\right.\)

Ta có:

\(S=x_1^7+x_2^7=(x_1^3+x_2^3)(x_1^4+x_2^4)-x_1^3x_2^4-x_2^3x_1^4\)

\(=[(x_1+x_2)^3-3x_1x_2(x_1+x_2)][(x_1^2+x_2)^2-2x_1^2x_2^2]-x_1^3x_2^3(x_1+x_2)\)

\(=(a^3-3a)[((x_1+x_2)^2-2x_1x_2)^2-2]-a\)

\(=(a^3-3a)[(a^2-2)^2-2]-a\)

\(=a^7-7a^5+14a^3-7a\)

10 tháng 5 2017

Ta có \(\Delta\)'= \(\left(-m\right)^2-2m+2=\left(m-1\right)^2+1>0\veebar m\)

Vậy với mọi giá trị của m thì phương trình đã cho luôn có 2 nghiệm phân biệt

Theo hệ thức Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=2m-2\end{matrix}\right.\)

Thay giá trị của \(x_1+x_2\)\(x_1.x_2\) vào biểu thức A ta được :

\(A=\dfrac{6.\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)}=\dfrac{12m}{4m^2+4m+4}\)

\(A=\dfrac{3m}{m^2+m+1}\)

Cm: \(3m\le m^2+m+1\)

\(\Leftrightarrow\left(m-1\right)^2\ge0\) (luôn đúng ) (dấu = xảy ra khi x=1)

Do đó \(3m\le m^2+m+1\) khi đó ta được:

\(A=\dfrac{3m}{m+m+1}\le1\)

Vậy với GTLN của A = 1 khi và chỉ khi m=1

10 tháng 5 2017

mình gõ nhầm dấu = xảy ra khi m=1 chứ không phải x=1

11 tháng 5 2016

Chị ơi chị nên đăng vào buổi tối thì hơn vì buổi chiều các bạn lớp lớ không lên 

Với lại em chỉ mới hocllowps 7 thôi T-T

11 tháng 5 2016

Oh! Yah! Chị có thể đăng lên H.vn nhé!

9 tháng 1 2016

dùng hệ thức vi ét để biến đổi a/A= -3m^2 +2m +32=-3(m^2-2/3.m-32/3)=-3(m-1/3)^2-95/3 <= -95/3

                                            b/B=(2m+8)^2-3(m^2-8) rồi làm tương tự